Hierarchical segmentation of multimodal images from Earth observation to the analysis of building geo-materials

Mauro Dalla Mura

mauro.dalla-mura@gipsa-lab.grenoble-inp.fr

GIPSA-Lab, Grenoble Institute of Technology, France

ICMG 2016 07/07/2016

- JOCELYN CHANUSSOT, GIPSA-lab, France
- JEFF CHEN, LafargeHolcim, France
- LUCAS DRUMETZ, GIPSA-lab, France
- SÉBASTIEN LOMBARD, LafargeHolcim, France
- SAMUEL MEULENYZER, LafargeHolcim, France
- GUILLAUME TOCHON, GIPSA-lab, France
- MIGUEL VEGANZONES, GIPSA-lab, France

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

1 Introduction

- 2 Analysis of S.E.M. images based on Hierarchical Segmentation
- ⁽³⁾ Hierarchical segmentation of (EO) multimodal images
- 4 Conclusion

<ロ> (四) (四) (日) (日) (日)

Images of building materials microstructures

Goal

Measure phase fraction of materials (i.e, localize main chemical elements in fly ashes)

Earth Observation images

optical

SAR

LiDAR

Goal

Extract information of the land-cover (e.g., the matic classification, object extraction)

Hyperspectral imagery

Simultaneous acquisition $\mathcal{I} = \{\mathcal{I}_{\lambda_1}, \dots, \mathcal{I}_{\lambda_N}\}$ of several single band images \mathcal{I}_{λ_i} $(i = 1, \dots, N)$ over N narrow and contiguous wavelengths of the electromagnetic spectrum.

・ コ ト ・ 日 ト ・ 目 ト ・

gipsa-lab

Hyperspectral imagery

Simultaneous acquisition $\mathcal{I} = \{\mathcal{I}_{\lambda_1}, \dots, \mathcal{I}_{\lambda_N}\}$ of several single band images \mathcal{I}_{λ_i} $(i = 1, \dots, N)$ over N narrow and contiguous wavelengths of the electromagnetic spectrum.

・ロッ ・回 ・ ・ ヨッ・・

- \mathcal{I}_{λ_i} : grayscale image \rightarrow spatial information.

6 / 38

ICMG 2016

Hyperspectral imagery

Simultaneous acquisition $\mathcal{I} = \{\mathcal{I}_{\lambda_1}, \dots, \mathcal{I}_{\lambda_N}\}$ of several single band images \mathcal{I}_{λ_i} $(i = 1, \dots, N)$ over N narrow and contiguous wavelengths of the electromagnetic spectrum.

- \mathcal{I}_{λ_i} : grayscale image \rightarrow spatial information.
- $\mathbf{x} = (x_1, \ldots, x_N)$: reflectance spectrum \rightarrow spectral information.

gipsa-lab

SEM acquisitions

Scanning Electron Microscopy (S.E.M.)

- X-ray diffraction allows to reveal the presence of different chemical elements, providing spectral information
- Backscattered electron imaging is sensitive to the density of the observed pixel, providing spatial information

Image

Analysis of EO images

Image

Filtering

Analysis of EO images

Image

Filtering

Segmentation

ヘロア 人間ア 人間ア 人間ア

Analysis of EO images

Image

Filtering

Segmentation

Classification

・ロト ・四ト ・モト ・モト

1 Introduction

- 2 Analysis of S.E.M. images based on Hierarchical Segmentation
- **3** Hierarchical segmentation of (EO) multimodal images
- 4 Conclusion

(ロ) (日) (日) (日) (日)

Supervised Classification of S.E.M. images First attempts

Alite Belite Portlandite Hydrates Sulfo Aluminates Inners Quartz Dark gray fly ashes Light gray fly ashes White fly ashes Porosity

Approach

- Supervised classification with Support Vector Machines (SVM)
- Perform spatial regularization by Markov Random Fields (MRF)

Mauro Dalla Mura (GIPSA-lab) Hierarchical segm. of multimod. images

ICMG 2016 10 / 38

- Overall good results (i.e., main material phases are identified)
- However, the technique does not preserve enough spatial features, or fail for specific types of classes, e.g. micronized fly ashes (important compounds in the cement industry)

A B + A B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

ICMG 2016

11 / 38

Classification of S.E.M. images based on Hierarchical Segmentation

 \ldots + image filtering and user's interaction

Idea

- Filter the image
- Perform a hierarchical segmentation of the image
- Do classification on top of it
- Allow the user to interact in order to
 - improve the segmentation (i.e., chose an appropriate segmentation in the hierarchy)
 - improve classification (i.e., correct misclassified regions and retrain the classifier)

Classification of S.E.M. images based on Hierarchical Segmentation ... + image filtering and user's interaction

 3×3 median filter

BM3D

L. Drumetz, M. Dalla Mura, S. Meulenyzer, S. Lombard, and J. Chanussot, "Semiautomatic classification of cementitious materials using scanning electron microscope images," *Journal of Electronic Imaging*, vol. 24, no. 6, p. 061 109, 2015.

Mauro Dalla Mura (GIPSA-lab) Hierarchical segm. of multimod. images

ICMG 2016 13 / 38

Classification of S.E.M. images based on Hierarchical Segmentation

...+ image filtering and user's interaction

L. Drumetz, M. Dalla Mura, S. Meulenyzer, S. Lombard, and J. Chanussot, "Semiautomatic classification of cementitious materials using scanning electron microscope images," *Journal of Electronic Imaging*, vol. 24, no. 6, p. 061 109, 2015.

イロト イヨト イヨト イヨ

Classification of S.E.M. images based on Hierarchical Segmentation $\dots + \text{image filtering and user's interaction}$

L. Drumetz, M. Dalla Mura, S. Meulenyzer, S. Lombard, and J. Chanussot, "Semiautomatic classification of cementitious materials using scanning electron microscope images," *Journal of Electronic Imaging*, vol. 24, no. 6, p. 061 109, 2015.

ICMG 2016 15 / 38

(日) (四) (三) (三) (三)

Classification of S.E.M. images based on Hierarchical Segmentation $\dots + \text{image filtering and user's interaction}$

L. Drumetz, M. Dalla Mura, S. Meulenyzer, S. Lombard, and J. Chanussot, "Semiautomatic classification of cementitious materials using scanning electron microscope images," *Journal of Electronic Imaging*, vol. 24, no. 6, p. 061 109, 2015.

ICMG 2016

16 / 38

Classification of S.E.M. images based on Hierarchical Segmentation \ldots on concrete too!

Classification of S.E.M. images based on Hierarchical Segmentation \ldots on concrete too!

1 Introduction

2 Analysis of S.E.M. images based on Hierarchical Segmentation

⁽³⁾ Hierarchical segmentation of (EO) multimodal images

- Preliminaries
- Segmentation of multimodal images
- Results

・ロト ・日ト ・ヨト・

・ロト ・回ト ・ヨト

・ロト ・日ト ・ヨト・

・ロト ・日ト ・ヨト・

Solution: represent them all in a hierarchical structure.

- $\rightarrow\,$ Can be built once, regardless of the application.
- $\rightarrow\,$ Flexible analysis, tuned afterwards depending on the goal.

・ロト ・日下 ・ヨン

Partition π of E:

 $\label{eq:constraint} \begin{array}{l} \rightarrow \mbox{ Collection of disjoint regions $\mathcal{R} \subseteq E$ whose union cover E.} \\ \Pi_E: \mbox{ set of all partitions of E.} \end{array}$

(ロ) (日) (日) (日) (日)

Partition π of E:

- $\label{eq:constraint} \begin{array}{l} \rightarrow \mbox{ Collection of disjoint regions $\mathcal{R} \subseteq E$ whose union cover E.} \\ \Pi_E: \mbox{ set of all partitions of E.} \end{array}$
- $\rightarrow\,$ Any two partitions may (or may not) be comparable with the refinement ordering $\leq.$

Partition π of E:

- → Collection of disjoint regions $\mathcal{R} \subseteq E$ whose union cover E. Π_E : set of all partitions of E.
- $\rightarrow\,$ Any two partitions may (or may not) be comparable with the refinement ordering $\leq.$
- $\rightarrow~(\Pi_E,\leq)$ is a lattice: any two partitions have a refinement infimum and refinement supremum.

Hierarchy of partitions

A hierarchy of partitions H of E can be described as

- A sequence of partitions $H = \{\pi_i, i \in \{0, \ldots, n\}\}$ ordered by refinement: $0 \le i \le i$ $j \leq n \Rightarrow \pi_i \leq \pi_j$. π_0 is the *leaf* partition of H, and $\pi_n = \{E\}$ is the root of H.
- A collection of regions $H = \{\mathcal{R} \subseteq E\}$ such that $\emptyset \notin H, E \in H$, and for any two $\mathcal{R}_i, \mathcal{R}_i \in H, \mathcal{R}_i \cap \mathcal{R}_i \in \{\emptyset, \mathcal{R}_i, \mathcal{R}_i\}.$

Cut

A cut of H is a partition π of E whose regions belong to H. $\Pi_E(H)$ denotes the set of all cuts of a hierarchy of partitions H.

・ロト ・日ト・ ・日ト

Partial partition

A partial partition $\pi(\mathcal{R})$ of a region $\mathcal{R} \in H$ is a cut of the sub-hierarchy $H(\mathcal{R})$ rooted at \mathcal{R} .

・ロト ・日ト ・ヨト・

Energy of a partition

- 1 Define a regional energy: $\mathcal{E} : \mathcal{R} \subseteq E \mapsto \mathcal{E}(\mathcal{R}) \in \mathbb{R}^+$.
- 2 Compose the energy of the partition π w.r.t the energies of its regions:

$$\mathcal{E}(\pi = \{\mathcal{R}_i\}) = \mathfrak{D}_{\mathcal{R}_i \in \pi} \mathcal{E}(\mathcal{R}_i).$$

Optimal cut

The cut of H that is minimal (i.e., optimal) with respect to the energy \mathcal{E} is defined as:

$$\pi^* = \operatorname*{argmin}_{\pi \in \Pi_E(H)} \mathcal{E}(\pi)$$

・ロト ・日下・ ・ ヨト・・
Energy of a partition

- 1 Define a regional energy: $\mathcal{E} : \mathcal{R} \subseteq E \mapsto \mathcal{E}(\mathcal{R}) \in \mathbb{R}^+$.
- 2 Compose the energy of the partition π w.r.t the energies of its regions:

$$\mathcal{E}(\pi = \{\mathcal{R}_i\}) = \mathfrak{D}_{\mathcal{R}_i \in \pi} \mathcal{E}(\mathcal{R}_i).$$

Optimal cut

The cut of H that is minimal (i.e., optimal) with respect to the energy ${\mathcal E}$ is defined as:

$$\pi^{\star} = \operatorname*{argmin}_{\pi \in \Pi_{E}(H)} \mathcal{E}(\pi)$$

・ロト ・日下・ ・日下・

ICMG 2016

25 / 38

Mauro Dalla Mura (GIPSA-lab) Hierarchical segm. of multimod. images

Under assumptions of *singularity* and *h*-increasingness for \mathcal{E}, π^* is obtained by solving $\forall \mathcal{R} \in H$ the dynamic program:

$$\begin{split} \mathcal{E}^{\star}(\mathcal{R}) &= \min \left\{ \mathcal{E}(\mathcal{R}), \mathcal{E}\Big(\bigsqcup_{r \in \mathsf{S}(\mathcal{R})} \pi^{\star}(r)\Big) \right\} \\ \pi^{\star}(\mathcal{R}) &= \operatorname{argmin} \left\{ \mathcal{E}(\mathcal{R}), \mathcal{E}\Big(\bigsqcup_{r \in \mathsf{S}(\mathcal{R})} \pi^{\star}(r)\Big) \right\} \end{split}$$

・ロト ・日ト ・ヨト・

Under assumptions of *singularity* and *h*-increasingness for \mathcal{E}, π^* is obtained by solving $\forall \mathcal{R} \in H$ the dynamic program:

$$\begin{split} \mathcal{E}^{\star}(\mathcal{R}) &= \min \left\{ \mathcal{E}(\mathcal{R}), \mathcal{E}\Big(\bigsqcup_{r \in \mathsf{S}(\mathcal{R})} \pi^{\star}(r)\Big) \right\} \\ \pi^{\star}(\mathcal{R}) &= \operatorname{argmin} \left\{ \mathcal{E}(\mathcal{R}), \mathcal{E}\Big(\bigsqcup_{r \in \mathsf{S}(\mathcal{R})} \pi^{\star}(r)\Big) \right\} \end{split}$$

・ロト ・日ト ・ヨト・

Under assumptions of *singularity* and *h*-increasingness for \mathcal{E}, π^* is obtained by solving $\forall \mathcal{R} \in H$ the dynamic program:

$$\begin{split} \mathcal{E}^{\star}(\mathcal{R}) &= \min \left\{ \mathcal{E}(\mathcal{R}), \mathcal{E}\Big(\bigsqcup_{r \in \mathsf{S}(\mathcal{R})} \pi^{\star}(r)\Big) \right\} \\ \pi^{\star}(\mathcal{R}) &= \operatorname{argmin} \left\{ \mathcal{E}(\mathcal{R}), \mathcal{E}\Big(\bigsqcup_{r \in \mathsf{S}(\mathcal{R})} \pi^{\star}(r)\Big) \right\} \end{split}$$

Under assumptions of *singularity* and *h*-increasingness for \mathcal{E}, π^* is obtained by solving $\forall \mathcal{R} \in H$ the dynamic program:

$$\begin{split} \mathcal{E}^{\star}(\mathcal{R}) &= \min \left\{ \mathcal{E}(\mathcal{R}), \mathcal{E}\Big(\bigsqcup_{r \in \mathsf{S}(\mathcal{R})} \pi^{\star}(r)\Big) \right\} \\ \pi^{\star}(\mathcal{R}) &= \operatorname{argmin} \left\{ \mathcal{E}(\mathcal{R}), \mathcal{E}\Big(\bigsqcup_{r \in \mathsf{S}(\mathcal{R})} \pi^{\star}(r)\Big) \right\} \end{split}$$

Under assumptions of *singularity* and *h*-increasingness for \mathcal{E}, π^* is obtained by solving $\forall \mathcal{R} \in H$ the dynamic program:

$$\begin{split} \mathcal{E}^{\star}(\mathcal{R}) &= \min \left\{ \mathcal{E}(\mathcal{R}), \mathcal{E}\Big(\bigsqcup_{r \in \mathsf{S}(\mathcal{R})} \pi^{\star}(r)\Big) \right\} \\ \pi^{\star}(\mathcal{R}) &= \operatorname{argmin} \left\{ \mathcal{E}(\mathcal{R}), \mathcal{E}\Big(\bigsqcup_{r \in \mathsf{S}(\mathcal{R})} \pi^{\star}(r)\Big) \right\} \end{split}$$

Under assumptions of *singularity* and *h*-increasingness for \mathcal{E}, π^* is obtained by solving $\forall \mathcal{R} \in H$ the dynamic program:

$$\begin{split} \mathcal{E}^{\star}(\mathcal{R}) &= \min \left\{ \mathcal{E}(\mathcal{R}), \mathcal{E}\Big(\bigsqcup_{r \in \mathsf{S}(\mathcal{R})} \pi^{\star}(r)\Big) \right\} \\ \pi^{\star}(\mathcal{R}) &= \operatorname{argmin} \left\{ \mathcal{E}(\mathcal{R}), \mathcal{E}\Big(\bigsqcup_{r \in \mathsf{S}(\mathcal{R})} \pi^{\star}(r)\Big) \right\} \end{split}$$

Parametrized family of energies

Often in practice, the energy is parametrized by a positive real-valued parameter λ (e.g. Lagrange families $\mathcal{E}_{\lambda}(\pi) = \mathcal{E}_{\phi}(\pi) + \lambda \mathcal{E}_{\rho}(\pi)$). $\{\mathcal{E}_{\lambda}\}_{\lambda \in \mathbb{R}^+}$ therefore induces a family of optimal cuts $\{\pi_{\lambda}^{\star}\}_{\lambda \in \mathbb{R}^+}$.

Parametrized family of energies

Often in practice, the energy is parametrized by a positive real-valued parameter λ (e.g. Lagrange families $\mathcal{E}_{\lambda}(\pi) = \mathcal{E}_{\phi}(\pi) + \lambda \mathcal{E}_{\rho}(\pi)$). $\{\mathcal{E}_{\lambda}\}_{\lambda \in \mathbb{R}^+}$ therefore induces a family of optimal cuts $\{\pi_{\lambda}^{\star}\}_{\lambda \in \mathbb{R}^+}$.

Persistent hierarchy [Kiran & Serra, 2014]

Under the assumption of *scale-increasingness*, the optimal cuts can be ordered with λ , *i.e.*, $\lambda_1 \leq \lambda_2 \Rightarrow \pi_{\lambda_1}^* \leq \pi_{\lambda_2}^*$. H^* : **persistent** hierarchy of H, composed of all its optimal cuts with respect to \mathcal{E}_{λ} when λ spans \mathbb{R}^+ .

・ロト ・四ト ・ヨト ・ヨー

Parametrized family of energies

Often in practice, the energy is parametrized by a positive real-valued parameter λ (e.g. Lagrange families $\mathcal{E}_{\lambda}(\pi) = \mathcal{E}_{\phi}(\pi) + \lambda \mathcal{E}_{\rho}(\pi)$). $\{\mathcal{E}_{\lambda}\}_{\lambda \in \mathbb{R}^+}$ therefore induces a family of optimal cuts $\{\pi_{\lambda}^{\star}\}_{\lambda \in \mathbb{R}^+}$.

Persistent hierarchy [Kiran & Serra, 2014]

Under the assumption of *scale-increasingness*, the optimal cuts can be ordered with λ , *i.e.*, $\lambda_1 \leq \lambda_2 \Rightarrow \pi_{\lambda_1}^* \leq \pi_{\lambda_2}^*$. H^* : **persistent** hierarchy of H, composed of all its optimal cuts with respect to \mathcal{E}_{λ} when λ spans \mathbb{R}^+ .

Sensorial multimodality

・ロ・ ・雪・ ・雨・ ・雨・

ICMG 2016 28 / 38

Sensorial multimodality Multisource images

イロト イヨト イヨト イヨト

ł

Sensorial multimodality

イロト イヨト イヨト イヨト

ł

Sensorial multimodality

æ

イロト イヨト イヨト イヨト

Let $B = \{\pi_i \in \Pi_E\}$ be some family of partitions. B is a braid iff there exists some hierarchy H_m , called monitor hierarchy, such that

 $\forall \pi_i, \pi_j \in B, \pi_i \lor \pi_{j \neq i} \in \Pi_E(H_m) \setminus \{E\}$

< 47 ►

→ Ξ →

Let $B = \{\pi_i \in \Pi_E\}$ be some family of partitions. B is a braid iff there exists some hierarchy H_m , called monitor hierarchy, such that

 $\forall \pi_i, \pi_j \in B, \pi_i \lor \pi_{j \neq i} \in \Pi_E(H_m) \setminus \{E\}$

Let $B = \{\pi_i \in \Pi_E\}$ be some family of partitions. B is a braid iff there exists some hierarchy H_m , called monitor hierarchy, such that

 $\forall \pi_i, \pi_j \in B, \pi_i \lor \pi_{j \neq i} \in \Pi_E(H_m) \setminus \{E\}$

Let $B = \{\pi_i \in \Pi_E\}$ be some family of partitions. B is a braid iff there exists some hierarchy H_m , called monitor hierarchy, such that

 $\forall \pi_i, \pi_j \in B, \pi_i \lor \pi_{j \neq i} \in \Pi_E(H_m) \setminus \{E\}$

Let $B = \{\pi_i \in \Pi_E\}$ be some family of partitions. B is a braid iff there exists some hierarchy H_m , called monitor hierarchy, such that

 $\forall \pi_i, \pi_j \in B, \pi_i \lor \pi_{j \neq i} \in \Pi_E(H_m) \setminus \{E\}$

< 47 ►

→ Ξ →

Provided that π_1, π_2 and π_3 are extracted from different modalities:

- \rightarrow H_m encodes the redundant part of multimodal information.
- $\rightarrow~B$ expresses the complementarity between modalities.
- $\Rightarrow B/H_m \Leftrightarrow$ hierarchical representation of multimodal image.

Optimal cut [Kiran & Serra, 2015]

The optimal cut of a braid B is reached by solving $\forall \mathcal{R} \in H_m$:

$$\mathcal{E}^{\star}(\mathcal{R}) = \min\left\{\mathcal{E}(\mathcal{R}), \mathcal{E}\left(\bigsqcup_{r \in \mathsf{S}(\mathcal{R})} \pi^{\star}(r)\right), \bigwedge_{\pi_{i}(\mathcal{R}) \in B} \mathcal{E}(\pi_{i}(\mathcal{R}))\right\}$$

(日) (四) (三) (三) (三)

G. Tochon, "Hierarchical analysis of multimodal images," PhD Thesis. https://www.archives-ouvertes.fr/tel-01242836v2/document

ICMG 2016 32 / 38

イロト イヨト イヨト イヨト

Procedure for the construction of the braid:

Procedure for the construction of the braid:

Procedure for the construction of the braid:

イロト イヨト イヨト イヨト

Procedure for the construction of the braid:

 $\implies B = \{\pi_1^1, \pi_1^2, \pi_2^1, \pi_2^2\}$ has a braid structure.

・ロト ・日ト ・ヨト ・ヨト

Braid-based multimodal segmentation

Experimental setup

\mathcal{I}_1 : 144 bands hyperspectral image

 \mathcal{I}_2 : LiDAR-derived digital surface model

イロン スロン メヨン メヨ

Braid-based multimodal segmentation

Experimental setup

 $\hookrightarrow H_i$: binary partition tree built on \mathcal{I}_i , with standard parameters.

 $\begin{array}{l} \hookrightarrow \mathcal{E}^{i}_{\lambda} \text{: Piecewise constant Mumford-Shah model:} \\ \mathcal{E}^{i}_{\lambda}(\pi) = \sum_{R \in \pi} \left(\Xi_{i}(\mathcal{R}) + \frac{\lambda}{2} |\partial \mathcal{R}| \right) \text{ with } \Xi_{i}(\mathcal{R}) = \sum_{\mathbf{x} \in \mathcal{R}} \|\mathcal{I}_{i}(\mathbf{x}) - \boldsymbol{\mu}_{i}(\mathcal{R})\|_{2}^{2} \end{array}$

 $\hookrightarrow H_i^\star$: persistent hierarchy of H_i w.r.t \mathcal{E}_{λ}^i .

Braid-based multimodal segmentation

Experimental setup

 $\hookrightarrow B$: constructed as previously described.

 $\begin{array}{l} \hookrightarrow \mathcal{E}^B_{\lambda} \text{: proposed multimodal piecewise constant Mumford-Shah energy:} \\ \mathcal{E}^B_{\lambda}(\pi) = \sum_{\mathcal{R} \in \pi} \left(\max\left(\frac{\Xi_1(\mathcal{R})}{\Xi_1(\mathcal{I}_1)}, \frac{\Xi_2(\mathcal{R})}{\Xi_2(\mathcal{I}_2)} \right) + \frac{\lambda}{2} |\partial \mathcal{R}| \right) \end{array}$

 $\hookrightarrow \pi^*_B$ extracted from H_m by setting λ empirically/to achieve a constrained number of regions.

イロト イヨト イヨト イヨト

Braid-based multimodal segmentation $_{\rm Results}$

Hyperspectral optimal cut

 $\pi^{\star}_1~(325~{\rm regions})$

LiDAR optimal cut

 π_2^{\star} (325 regions)

Braid optimal cut

 π_B^{\star} (325 regions)

(ロ) (日) (日) (日) (日)

Braid-based multimodal segmentation $_{\rm Results}$

average GOF value:
$$\epsilon(\pi | \mathcal{I}_i) = \frac{1}{|E|} \sum_{\mathcal{R} \in \pi} |\mathcal{R}| \times \Xi_i(\mathcal{R})$$

 $\epsilon(\pi_1^\star | \mathcal{I}_1) = 52.5$

 $\epsilon(\pi_1^\star | \mathcal{I}_2) = 3884.5$

 $\epsilon(\pi_2^\star | \mathcal{I}_1) = 145.4$

 $\epsilon(\pi_2^\star|\mathcal{I}_2) = 1224.8$

 $\epsilon(\pi_B^\star | \mathcal{I}_1) = \mathbf{48.5}$

 $\epsilon(\pi_B^\star | \mathcal{I}_2) = \mathbf{994.9}$

イロト イヨト イヨト イヨト

- Hierarchical Segmentation, proved to be effective for phase identification in S.E.M. images
- The supervised classification approach proposed based on hierarchical segmentation and user's interaction is currently in use at LafargeHolcim R&D center
- The proposed technique of hierarchical segmentation of multimodal images led promising results on EO images
- ... test it on S.E.M. images

・ロト ・ 日 ・ ・ 回 ・

- Hierarchical Segmentation, proved to be effective for phase identification in S.E.M. images
- The supervised classification approach proposed based on hierarchical segmentation and user's interaction is currently in use at LafargeHolcim R&D center
- The proposed technique of hierarchical segmentation of multimodal images led promising results on EO images
- ... test it on S.E.M. images

・ コ ト ・ 日 ト ・ 目 ト ・

- Hierarchical Segmentation, proved to be effective for phase identification in S.E.M. images
- The supervised classification approach proposed based on hierarchical segmentation and user's interaction is currently in use at LafargeHolcim R&D center
- The proposed technique of hierarchical segmentation of multimodal images led promising results on EO images

• ... test it on S.E.M. images

- Hierarchical Segmentation, proved to be effective for phase identification in S.E.M. images
- The supervised classification approach proposed based on hierarchical segmentation and user's interaction is currently in use at LafargeHolcim R&D center
- The proposed technique of hierarchical segmentation of multimodal images led promising results on EO images
- ... test it on S.E.M. images
Hierarchical segmentation of multimodal images from Earth observation to the analysis of building geo-materials

Mauro Dalla Mura

mauro.dalla-mura@gipsa-lab.grenoble-inp.fr

GIPSA-Lab, Grenoble Institute of Technology, France

ICMG 2016 07/07/2016

