Imaging of Construction Materials and Geomaterials

Organized by Chair Materials Science for Sustainable Construction supported by LafargeHolcim

7-8 Jul 2016 Champs sur Marne (France)

On the Use of Digital Volume Correlation for the Identification of the Crushing Behavior of Plaster

A. Bouterf, J. Adrien, E. Maire, X. Brajer, F. Hild, S. Roux

Plasterboard

Paper Roller coating

Foamed plaster (core)

1.4 mm

Brittle Foam

Multiscale Microstructure

LO1

Nail Pull Test on Plasterboard

[ASTM Standard C1396/C1396M-14, 2014, DOI: 10.1520/C1396_C1396M]

Nail Pull Test on Plasterboard

In-Situ Nail Pull Test

[Bouterf et al., 2016, Exp. Mech. DOI: 10.1007/s11340-016-0168-8]

300

(X) 200 Toaq

100

0

ĨN.

g

300

(Z) 200 Toaq

100

0

g

300

(Z) 200 Toaq

100

0

g

300

(X) 200 Toaq

100

0

g.

300

(Z) 200 Togo

100

0

g

300 g

(X) 200 Toaq

100

0

300

(X) 200 Toaq

100

0

g

300

(X) 200 Toaq

100

0

g

300

(X) 200 Toaq

100

0

g

(X) 200 Toaq

100

0

g

Spherical Indentation Test

• Aims

- Better understand crushing mechanism
- Identify local failure criterion
- Sample

Tomographic Observations

Tomographic observations

- Compaction accompanied by pore collapse
- Same observations in artificial porous rock*

*[Leite et al., 2001, Eng. Geol., 59 pp. 267-280]

Spherical Indentation Test

Identification of local failure criterion

- Estimation of multiaxial stress state in transition zone

Two-Phase Model

$$a^{2} = \begin{cases} 2Rd - d^{2} \\ 2\rho\delta - \delta^{2} \end{cases} \quad \phi = \frac{V_{i}}{V_{0}} = \frac{\pi Rd^{2} - d^{3}/3}{\pi \rho\delta^{2} - \delta^{3}/3} \end{cases}$$

Scan	g	h	i	j
d / δ	0.44	0.47	0.50	0.46

 $\phi \approx 0.47$ $\Delta \varepsilon_{CE} = \log(1-\phi) \approx -0.63$

Static Analysis

No shear flow (surface normal = eigen stress direction)

$$F_z = \pi a^2 \sigma_R$$

Digital Volume Correlation (DVC)

Gray level (reconstructed) volumes

 $f(\underline{x}) = g(x)$

- Conservation of gray levels
 - $f(\underline{x}) \cong g(\underline{x} + \underline{u}(\underline{x}))$
- Measure $\underline{u}(\underline{x})$?

Digital Volume Correlation

- Local registration:
 - Biomechanics
 [Bay et al., 1999; 2002; Verhulp et al., 2004; Tong et al., 2009...]
 - Mechanics of materials
 [Bornert et al., 2004; Franck et al., 2007; Germaneau et al., 2007; Lenoir et al., 2007; Forsberg et al., 2008...]
- Global registration:
 - Biomechanics [Benoit *et al.*, 2009; Madi *et al.*, 2013]
 - Mechanics of materials
 [Roux et al., 2008; Réthoré et al., 2008; HF et al., 2009; Limodin et al., 2009...]

Global Approach to DVC

- Select a specific displacement basis $\underline{\varphi}_i(\underline{x})$ such that

$$\underline{u}(\underline{x}) = \sum_{i} a_{i} \underline{\varphi}_{i}(\underline{x})$$

- Minimize correlation residuals* $\rho_c^2(\{a_i\}) = \iiint [f(\underline{x}) - g(\underline{x} + a_i \underline{\varphi_i}(\underline{x}))]^2 d\underline{x}$
- Successive linearizations / corrections

$$M_{ij}\delta a_j = b_i$$

Finite Element DVC

$$\rho_{\text{lin}}^{2}(\delta \underline{u}) = \int_{\Omega} [f(\underline{x}) - \hat{g}(\underline{x}) - (\delta \underline{u} \cdot \nabla f)(\underline{x})]^{2} d\underline{x}$$

$$= \sum_{e} \int_{\Omega_{e}} [f(\underline{x}) - \hat{g}(\underline{x}) - \delta a_{i}^{e} (\underline{\varphi}_{i} \cdot \nabla f)(\underline{x})]^{2} d\underline{x}$$

Elementary matrix and vector (e.g., C8P1*)

$$M_{ij}^{e} = \int_{\Omega_{e}} \left(\nabla f \cdot \underline{\varphi}_{i} \right) (\underline{x}) \left(\nabla f \cdot \underline{\varphi}_{j} \right) (\underline{x}) d\underline{x}$$
$$b_{i}^{e} = \int_{\Omega_{e}} \left[f(\underline{x}) - \hat{g}(\underline{x}) \right] \left(\nabla f \cdot \underline{\varphi}_{i} \right) (\underline{x}) d\underline{x}$$

*[Roux et al., 2008, Comp. Part A 39 pp. 1253-1265]

C8-DVC Analyses

Small amplitude displacements

- Standard displacement resolution \approx 0.4 voxel (ℓ = 8 voxels)
- Unreliable elastic strain estimates

Reduced Kinematic Basis

FE-generated kinematic basis

- Isotropic elasticity
- Crushed zone excluded
- T4 mesh
- Dirichlet boundary conditions
 - measured rigid body motion (C8-DVC)
 - linear combination of modes

Reduced Kinematic Basis

- BCs under crushed zone
 - Axisymmetric fields

 $u_x(a_i, \varphi, \theta) = v \cos(\varphi) \sin(\theta) + w \cos(\varphi) \cos(\theta)$ $u_y(a_i, \varphi, \theta) = v \sin(\varphi) \sin(\theta) + w \sin(\varphi) \cos(\theta)$ $u_z(a_i, \varphi, \theta) = v \cos(\varphi) - w \sin(\theta)$ $\theta \text{ and } \varphi \text{ are polar et azimuthal angles}$ $v = a_1 + a_2 \cos(\theta) + a_3 \cos(2\theta) + a_4 \cos(3\theta)$ $w = a_5 \sin(\theta) + a_6 \sin(2\theta) + a_7 \sin(3\theta)$

Shear fields
 'unperfect' loading

Reduced Kinematic Basis

Rigid body motion

Displacement field associated with 1st amplitude

Displacement field associated with 8th amplitude

[Bouterf et al., 2014, Strain 50 pp. 444-453]

Measurement Results

- Standard displacement resolution ≈ 0.02 voxel ($\ell = 8$ voxels)
 - Divided by 20 wrt. standard C8-DVC
 - # DOF = 9

Comparison

RMS GL residual: 5.06%

46

RMS GL residual: 5.14%

50 Minor Principal Stress 10 50 z

Surface Contour $\sigma_3 = -5$ MPa

Surface Contour $\sigma_3 = -6$ MPa

Surface Contour $\sigma_3 = -7$ MPa

FE Simulations

Good macroscopic agreement

Abrupt / smooth transition

Outlook: Cracks (of course)!

1.8

1.6

1.4

1.2

1.0

0.8

0.6 0.4

0.2

0

'Here is my secret. It is very simple: It is only with the heart that one can see rightly; What is essential is invisible to the eye.'

