

Psiché: Synchrotron tomography and diffraction for materials science

Andrew King, Synchrotron SOLEIL J.-P. Itié, N. Guignot, J.-P. Deslandes, E. Boulard, P. Zerbino, A. Delmotte, and many others at SOLEIL

SOLEIL:

- The French national synchrotron radiation source
- Located at St Aubin, 25 km south of Paris
- First electrons accelerated 2006
- 2.75 GeV storage ring, 354 m circumference, typically
 430 450 mA top up (will go to 500 mA)
- Peer reviewed proposal system, open to all.
 - Next call 15 February 2016
- Reimbursement for French institutions of travel, accommodation, food
- For European users reimbursement via European Calipso program - finished May 2015...

Psiché beam line

- Pression, Structure et Imagerie par Contraste à Haute Energie
- Highest energy beam line at SOLEIL

- In vacuum wiggler, photons from ~20-100 keV
- Two types of experiment
 - Diffraction at extreme pressures
 - Tomography for materials science
- Polyvalent and flexible

The Psiché tomograph

- Optimised for *in-situ* materials science
- Built by Leuven Air Bearings
- High precision, heavy load rotation stage (>50kg, ~100nm error, 60 rpm)
- Fully open 250 mm aperture
 - Space for in-situ rigs
 "build downwards"
 - "build downwards"
- Collaboration with M. Bornert and N. Lenoir (ENPC)

Illumination

- Max beam size ~15 x 4.5 mm
 - samples to 30 mm dia. using half acquisition
 - Can focus beam vertically to increase flux on small samples
- Si 111 Bragg mono
 - (ΔE/E~10⁻⁴, 20-50 keV)
 - Delicate samples
 - Diffraction contrast tomography
- White / Pink beam
 - Much faster
 - Use filters (absorption edges) and mirror to tune spectrum
 - exploit the highest energies

Illumination – Pink beam

- Combine mirror (as low pass filter) and filters.
- Some examples giving about 1% transmitted power

detected flux (90 micron LuAG scintillator)

0

~25 - 65 keV

- Cooled filter support and sandwich system allows low melting point filters like tin, even at high power
- Sufficiently monochromatic for phase contrast and minimal beam hardening

White beam compatible detector

- Designed in-house at SOLEIL
- 0.3 8 µm pixel size
- Hamamatsu sCMOS camera
 - Up to 100 2k² pixel frames per second sustained (20 mins)
 - Cooled for low noise
- Flexible design:
 - Motorised camera and objective
 - X-ray transparent, compact head
 - Plan to go to 0.13 µm pixels,
 ~0.5 µm resolution
 - Or very fast camera optics
 - Zoom optics

Instrument control and computing

- Psiché uses **Spyc** for control
 - Official SOLEIL Python based command line + scripting

- SOLEIL's FlyScan for fast (continuous) acquisition
- Via Spyc:
 - Focus/zoom/avoid collisions in detector
 - Align the instrument
 - Setup and launch FlyScan acquisition
 - Can quickly and easily develop experiments
- Local data storage and reconstruction server in place.
 - 24 + 60 TB storage, X 3 NVidia K40 GPUs
 - Reconstruction with PyHST2 (ESRF)

Technical summary

Strong points of Psiché for tomography:

- Designed for in-situ materials experiments
- (Very) high flux (→500 mA, in-vacuum wiggler @ 24 m)
- Flux at high energies (fast acquisition at 65 keV pink beam, good for steel)
- Good spatial resolution and image quality
- Useful phase contrast
- Fast, efficient, local data storage and processing
- Flexible control system
- Options to combine tomography and diffraction

SiC composite failure mechanisms

- L. Gelebart, et al...
- In-situ loading in ENPC machine
- 33keV, 5µm, 35mm
- Now repeated in pink beam ~40 keV, 2.6µm.
 Next step 1.3µm x 4000 pixels

Wood: Phase contrast imaging

- Beam line not designed for this, but it works well
- Phase retrieval using Paganin filter in PyHST2

Plants in-situ (April 2015)

- Studying water in the xylem in response to drought
- The hole in the table allows imaging the top of tall plants – unique to SOLEIL and ENPC
- Next beamtime in May 2016

Technical summary

Strong points of Psiché for tomography:

- Designed for in-situ materials experiments
- (Very) high flux (→500 mA, in-vacuum wiggler @ 24 m)
- Flux at high energies (fast acquisition at 65 keV pink beam, good for steel)
- Good spatial resolution and image quality
- Useful phase contrast
- Fast, efficient, local data storage and processing
- Flexible control system
 - **Options to combine tomography and diffraction...**

Diffraction

- Measure radiation scattered from periodic structures
- Tomography observes real space
- Diffraction observes reciprocal space
 - X-ray diffraction gives information on the scale of interatomic distances and crystals planes
 - Peaks in spectrum correspond to planes

 \rightarrow

 \rightarrow

Identify crystalline phase

Index peaks Peak shifts etc...

Measure elastic deformation

PSICHE: Two mode of diffraction

- Monochromatic beam and angular dispersion
 - Fix $\boldsymbol{\lambda}$, measure $\boldsymbol{\theta}$, find \boldsymbol{d}

STALEIL

What possibilities for combining with tomography?

- Polychromatic (white) beam and energy dispersion
 - Fix θ , measure λ , find **d**

Energy dispersive setup: CAESAR

First combined experiment

- RoToPEc. Now done three user experiments
- Simultaneous imaging and diffraction

In situ high (P,T) Absorption Tomography (ROTOPEC)

Paris-Edinburgh high pressure cell with rotating anvils (collaboration IMPMC and ESRF).

RoToPEC

- Combined pink beam imaging and energy dispersive diffraction (Caesar system – N. Guignot)
- Measure volume as f(pressure) in amorphous materials
- Radiography greatly assists diffraction alignment

J.-P. Perrillat, natural olivine glass

Diffraction + imaging for high pressure

- Similar experiment but with tomograph
- Fast tomo

 (for 20 mins
 →15 s,
 140° rotation)
- Currently in progress...
 inhouse test

E. Boulard et al...

CAESAR diffraction for glasses

- Glasses: Periodic
 order that is
 interesting to study
- Tomography to observe compression under pressure
- CAESAR measurement
 - Cover extended Q range
 - Normalise and remove background

A. Clark, G. Morard, PSICHE etc...

Tomography and diffraction

- Some existing techniques that combine both:
 - White beam diffraction + monochromatic XRD (former ID15 ESRF)
 - White beam diffraction + white beam tomo (BESSY ?)
 - Diffraction contrast tomography / 3DXRD (ID11 ESRF)
 - Diffraction tomography (ID21, ID15, RoToPEC at ID2...?, others...)
- Not much prior work on tomo + energy dispersive diffraction
 - PSICHE can do both... natural direction to develop

Combining tomography and diffraction

- Start by tomography of a sample to reveal shape and structure – need fast reconstruction
- Then diffraction to investigated in more detail
- Use tomogram to plan diffraction measurement

 Interesting features, centering gauge volume...

Mapping phases with diffraction

- First idea:
 - Choose a point in the sample
 - Put this point on the centre of rotation
 - Measure diffraction while rotating sample

(sample more grains, make an isotropic gauge volume)

Mapping – first results

Au

Mapping phases – one step further?

- This approach gives spatial resolution ~ longest dimension of the diffraction gauge
- Can we use tomographic approach to improve spatial resolution?

- Select an ROI
- Scan diffraction gauge across ROI to build "projection"
- Repeat at multiple angles to make sinogram
- Reconstruct...

Test sample: magnesium alloy cylinder with gold and copper powder on the top surface

EDX Diffraction tomography

ACAN.

Au

30

40

Compare to absorption contrast

First user application

- Ancient textiles preserved by corrosion of metal artefacts
- Identify phases, understand preservation and corrosion mechanisms. Beam time November 2016...

J. Li, M. Bellato, L. Bertrand IPANEMA

Simultaneous diffraction and imaging

- Semi transparent imaging detector
 - monochromatic mode probably faster for diffraction but slower for imaging...
 - Limited options for spatially resolved diffraction

Monochromatic beam, angular dispersive diffraction Pink beam, energy dispersive diffraction (or CAESAR)

Future directions

- PSICHE (and my research) : imaging and diffraction
 logical progression is to combine these
- Various levels of complexity
 - Add imaging to the large volume cell high pressure experiments
 - Combine diffraction and imaging to study amorphous materials
 - Tomography plus crystallographic information (strain, phase changes)
 - Diffraction contrast tomography (mainly a software task)
 - Diffraction tomography

Diffraction contrast tomography (~3DXRD)

- Use the diffraction signal from grains in a polycrystal to build a grain map
- Each grain reconstructed tomographically
- Available at ID11 (ESRF), near future at Psiché.

The future - some targets

- Faster tomography
 - Full high res scan 2k², 1500 images in 15 seconds
 - Fast reconstruction and local data storage
- Add imaging to high pressure diffraction experiments
- Setup collaborations for our in-situ sample environments
- Add diffraction/fluorescence info to tomography
- Try to get a PhD student for tomography
- Implement diffraction tomography techniques
 - Diffraction contrast tomography
 - Diffraction tomography (point scanning type)
- Very fast tomography
 - full high res scan in ~0.5 seconds

Now!

Conclusions

- Psiché A new synchrotron tomography beam line at SOLEIL
- Interesting position for our community intersecting imaging, diffraction, high pressure, materials...
- Just in service, lots of future potential
- Feel free to get in touch to discuss

king@synchrotron-soleil.fr

Pink beam illumination

- Commissioning in progress
- Tune spectrum
 - Filters, absorption edges in filters and scintillators
 - Use mirror as low pass filter
- (Very) fast tomography
 → Limited by beam damage

Using tomography to plan a (diffraction) measurement

• Select positions of high resolution local tomograms

Low resolution tomo

Mosaic of fast high resolution tomos – avoid changing optics