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Fracture Process Zone 
Characteristics

• Microcracking

• Aggregate interlocking

• Friction

• …



Aim of Work
• Use our 3D “x-ray vision” to measure fracture 

processes that affect toughness (i.e. the fracture 
process zone).
- Measurements should be in form suitable for incorporation 

into mesoscale computational models.
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Figure7.Domaindiscretization.(a)Delaunaytessellationofnodalpointset;(b)
dualVoronoitessellation;andc)latticeelementijandviewofzero-sizespringset.

Displacementdegreesoffreedomaredefinedatnodalpointsassociatedwitheach

rigidcell.Elementijconsistoftworigidarms,whichextendfromthenodesoftwo

neighboringcells,joinedbyazero-sizespringsetpositionedattheareacentroid(point

C)oftheboundarysegmentcommontobothcells(Fig.7).Elasticpropertiesofthebulk
continuumareobtainedthroughappropriateassignmentofthespringcoefficients[42].

Latticemodelsconstructedfromrigid-body-springelementshavebeenappliedto

simulatingfractureinconcretematerialsandstructures[43].Theoriginalapproachof

Kawaihasbeenextendedinseveralsignificantways[43,44].Domaindiscretization

isbasedontheDelaunay/Voronoitessellationofanirregularlydistributedsetofnodal

points(Fig.7).ThelatticetopologyisdefinedbytheDelaunaytessellationofthenodes;
renderingoftheconcretevolume,andtheassignmentoflatticeelementproperties,is

basedonthedualVoronoitessellationofthesamesetofnodes.

ThespringsetsjoiningVoronoicellsconsistofthreeaxialsprings,orientednormal

andtangentialtothefacet,andthreerotationalspringsaboutthesamelocal(n-s-t)

axes.Thestiffnesscoefficientsoftheaxialspringsare:

ks=kt=α1kn=α1α2E
Aij

hij

,(2)

whereAijistheVoronoifacetarea;hijisthedistancebetweennodesiandj;α1

andα2areparameters,setinconjunctionwithauniaxialtensiontestsimulation,to

providemacroscopicrepresentationofbothelasticmodulusEandPoissonratioν.For

thespecialcaseofα1=α2=1,thelatticeiselasticallyhomogeneous,althoughthe

ref: John Bolander ref: Gianluca Cusatis



Outline

• Small scale in situ load tests of mortars using 
synchrotron source.

- Alternate fracture energy measurements

- Interfacial zone effects

• Mesoscale tests of fiber reinforced UHPC

- Energy dissipation due to fiber presence



Micro Scale Test Information

• Synchrotron sources:
- NSLS/Brookhaven National Lab
- APS/Argonne National Lab

• 30 keV monochromatic source

• Specimens:
- nominal 4 mm x 4 mm fine mortar cylinders 
- specimens loaded in axial compression and split 

cylinder mode using in situ frame
- 6 µm voxel size
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Axial Compression

Tomographic scanLoad

Deformation
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Specific Fracture Energy

•ΔAi measured from 3D 
images:

For load increment, i: 
•ΔWi determined from 

load-deformation plot

Segmented Image
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Fracture Measurements
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Split Cylinder 
Fracture

load axis
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2D sections
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Split Cylinder 
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“Model” Aggregates

0.5 mm



Specimens: 10% by volume (U & E)
50% by volume (U & E)



Example Slice Image
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Fracture Sequence

451 of the glass aggregates are similar to those of portland cement.
452 However, because the aggregate composition is highly uniform
453 compared to that of the cement matrix, we could identify aggre-
454 gates by calculating the standard deviation of the intensities
455 (brightness) of a 5 ! 5 ! 5 voxel array surrounding each voxel.
456 Within the aggregates, this standard deviation is quite low com-
457 pared to that of the surrounding matrix. A cross-section of this pro-
458 cessing is illustrated in Fig. 9. The segmented 3-D image of the
459 glass aggregates is shown in Fig. 10a. Once the aggregates are iden-
460 tified, their centroids can be located and their effective diameters
461 can be measured for use in a matched lattice model.

462 4.2. Model description and calibration

463 Micro-concrete specimens are discretized as shown in Fig. 10b,
464 where the sizes and locations of the glass aggregate inclusions are

465obtained from the 3-D tomographic analyses. Each glass aggregate
466is thus identified and represented by its volume and the (X,Y,Z)
467coordinates of its centroid. In close agreement with the test speci-
468mens, the volume of each aggregate is represented as a sphere. For
469comparison, Man and van Mier [27,28] map X-ray tomographic
470data directly onto a lattice structure to obtain high-resolution
471discretizations of actual concrete aggregates, which are irregular
472in shape and possess non-convex features. Their use of basalt
473and marble aggregates, which are significantly denser than the
474cement-based matrix, heightened the contrast of phases within
475the tomographic images and therefore facilitated the phase
476identification.
477Element types are assigned according to a three-phase repre-
478sentation of the micro-concrete: fine-grained mortar matrix, glass
479aggregate inclusions, and the matrix–aggregate interfaces. As ex-
480plained earlier in this paper, the fracture criterion depends on ele-
481ment type. For the homogeneous phases (matrix and aggregate),
482fracture depends on maximum principal stress, obtained from
483the stress tensor given by Eq. (6), and a tensile strength limit (Sec-
484tion 2.4.2). For the phase interfaces, fracture is based on a multi-
485component vectorial measure of stress, limited by a Mohr-Cou-
486lomb surface with a tension cut-off (Section 2.4.1). To maintain
487elastic uniformity of the homogeneous phases, a1 = a2 = 1.0, which
488results in m = 0.
489Incremental loading is applied along three arrays of nodes that
490run across the top and bottom of the specimen. Neither the nonlin-
491ear contact conditions nor friction along the contact surface are
492considered in these simulations. To reduce computational cost, half
493of each cylinder specimen in the longitudinal direction is modeled.
494Furthermore, inclusions outside of the assumed loading path (i.e.
495outside of the interval "1 6 X 6 1 mm), and those close to the cyl-
496inder boundary, have not been discretized. A typical numerical
497specimen consisted of about 13,000 nodes (which equates to
498roughly 80,000 degrees of freedom).

Fig. 7. Images of a cylinder section: (a) unloaded; (b) just prior to peak load; and (c) after peak load.

Fig. 8. (a) Untreated and (b) acid-etched-glass aggregates used as micro-concrete
inclusions.

Fig. 9. Glass aggregate identification: (a) Raw data image; (b) regions of low standard deviation of voxel intensities; and (c) binary image highlighting of aggregates.
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D. Asahina, E.N. Landis, P. Grassl and J.E. Bolander

tation of material structure (at the micro/meso scale of observation) provides a means for
studying pre-critical cracking and, ultimately, material strength and post-peak toughness.

a) segmented tomographic image b) lattice model discretization

Figure 1: Glass bead inclusions in a mortar matrix

2 METHODOLOGY

Tomographic images of unloaded micro-concrete, split-cylinder specimens provide ini-
tial configurations for the 3D lattice models, as shown in Fig. 1. Glass beads act as
aggregate inclusions with the small-scale (4 mm diameter) specimens. Lattice topology is
based on the Delaunay tessellation of nodal points within the specimen domain; the dual
Voronoi tessellation defines the elastic and fracture properties of the lattice elements.1,2

This discretization involves a three-phase representation of the material meso-structure:
hardened cement paste matrix, aggregate inclusions, and matrix-inclusion interface. The
regular discretization of the cylinder surface facilitates load application and adjustment
of the contact area with the load platens.

The Voronoi polygons tiling the spheres in Fig. 1b correspond to the interface between
the matrix and glass bead inclusions. The interface is assumed to be weak, as it is in
normal concrete. The lattice approach is versatile in its control of interface thickness,
which has been set at a/50 for these simulations, where a is the inclusion diameter.

As part of validation efforts prior to simulating the split-cylinder test, the lattice ap-
proach was used to model a stiff, spherical inclusion embedded in a matrix under uniform
(far-field) tension.1 Element breaking is assumed to be brittle and based on a Mohr-
Coulomb surface with a tension cut-off. Two types of matrix-inclusion interface were
considered: an interface with uniform strength properties and an interface with random
strength assignments. For the latter case, strength of the interface elements was normally

2



a) b)

c) d)

a) b)

c) d)





Where is the “Weak Link”?

• Question: can we 
identify critical flaw in 
specimen?

- Is it in cement paste?

- Is it a segment of the 
ITZ?



Fracture Analysis
• Apply a quasi stress intensity approach.

P P

Principal tensile stress

magnitude of 
principal tensile stress 
due to unit load 

projected area 
oriented normal to 
principal direction

α =

A =
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Critical flaw is assumed 
to produce highest K

σ1

shape and location, and a weak link due to a critical ITZ region. For the former, we make a loose142

application of traditional fracture mechanics, while for the latter, we develop a technique based on143

the high porosity nature of the ITZ. Both techniques are developed with the available 3D x-ray CT144

image data in mind, and both techniques are formalizations of preliminary work. (Gangsa et al.145

2015)146

Critical Stress Intensity Analysis147

As a starting point for a stress intensity analysis, we consider a Linear Elastic Fracture Me-148

chanics (LEFM) approach in which a stress intensity factor, K, is defined the tip of an infinitely149

sharp crack (Broek 1986):150

K = ��
p
a (1)151

for which � is the far field stress, a, is the length of the crack, and � is a constant that is defined152

by local geometry. For our work we must deviate from this well-known relationship for several153

reasons. First, due to resolution limitations, we are not in a position to evaluate a flaw with an154

infinitely sharp tip. Although, if we recognize that in hydrated cement paste there is porosity at155

a nano scale, this may not be such a concern because all flaws will be connected to such nano-156

scale porosity, which may for practical purposes be infinitely sharp. Second, and perhaps more157

importantly, the flaw geometry is typically not well represented by simple Euclidian objects. Hence158

a geometry parameter is not easily defined by analytical means.159

Despite these limitations, we introduce here a “quasi” stress intensity factor, K
q

, that is intended160

to account for the stress amplification around a given flaw, as well as the geometry of the specimen161

relative to the flaw, but admittedly does not come with the analytical rigor of a conventional162

LEFM-based stress intensity factor. Evaluation of K
q

consists of two parts: the location of the163

flaw in the split cylinder, and the orientation of the flaw. This can be written as:164

K
q

= P↵
4
p
A (2)165

Here, A is the flaw area, and P is the applied load, and ↵ is the principal tensile stress at the166

centroid of the flaw for a unit load. The 4th root of A comes from dimensional analysis, and167

we note that K
q

in eq. (2) has the same units as a traditional stress intensity factor, K. (e.g.168
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Results: Paste Specimens
Pult (N) α (mm-2) A (mm2) Kqc (MPa mm.5)

525 0.024 0.049 5.9
480 0.025 0.107 6.9
430 0.023 0.260 7.1
450 0.020 0.396 6.7

Kqc = Pultα A4



Results:  All Specimens
TABLE 2. Critical Flaw Analysis in Mortar Specimens

Specimen P
u

(N) ↵ A (mm2) K
q

(MPa·
p
mm)

U10-1 175 0.022 0.022 1.5

U10-2 420 0.010 0.532 3.6

U10-3 485 0.015 0.217 5.0

U50-1 275 0.013 0.155 2.2

U50-2 415 0.026 0.059 1.6

E10-1 415 0.010 0.021 1.6

E10-2 410 0.017 0.152 4.4

E10-3 375 0.024 0.319 6.8

E10-4 280 0.028 0.081 4.2

E10-5 220 0.031 0.851 6.6

E50-1 400 0.010 0.038 1.8

E50-2 385 0.018 0.056 3.4

21 Landis



Results:  All Specimens
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FIG. 7. Plot illustrating analysis of critical flaws. The values plotted are shown for a centrally
located flaw.
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ITZ as Weak Link
P

σ1

Analysis:
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tensile strength of porous interface
tensile stress at each interface

baseline interfacial strength



Results: ITZ as Weak Link
TABLE 3. ITZ Analysis in Mortar Specimens

Specimen P
u

(N) f
o

(MPa) mean, p̄ std. dev., s
p

max, p
max

U10-1 175 4.8 0.029 0.011 0.057

U10-2 420 8.6 0.037 0.012 0.062

U10-3 485 6.4 0.063 0.033 0.137

U50-1 275 7.5 0.038 0.028 0.140

U50-2 415 7.7 0.049 0.019 0.083

E10-1 415 11.2 0.036 0.019 0.080

E10-2 410 8.8 0.025 0.013 0.056

E10-3 375 6.2 0.047 0.014 0.085

E10-4 280 10.1 0.032 0.016 0.064

E10-5 220 6.3 0.030 0.017 0.082

E50-1 400 10.8 0.038 0.017 0.104

E50-2 385 10.6 0.041 0.015 0.092

22 Landis

TABLE 2. Critical Flaw Analysis in Mortar Specimens

Specimen P
u

(N) ↵ A (mm2) K
q

(MPa·
p
mm)

U10-1 175 0.022 0.022 1.5

U10-2 420 0.010 0.532 3.6

U10-3 485 0.015 0.217 5.0

U50-1 275 0.013 0.155 2.2

U50-2 415 0.026 0.059 1.6

E10-1 415 0.010 0.021 1.6

E10-2 410 0.017 0.152 4.4

E10-3 375 0.024 0.319 6.8

E10-4 280 0.028 0.081 4.2

E10-5 220 0.031 0.851 6.6

E50-1 400 0.010 0.038 1.8

E50-2 385 0.018 0.056 3.4

21 Landis



Steel Fiber Reinforced UHPC



Research Objective

• Measure internal energy dissipation in fiber 
reinforced UHPC beams subjected to 
quasi-static and impact loads through the 
analysis of x-ray CT images.

• Is there a shift in internal energy dissipation 
mechanisms?



Materials
• UHPC Matrix: 180 MPa compressive strength

• 2 fiber types

- 30 mm hooked steel

- 12 mm brass coated 
straight

• 3.5% nominal 
volume fraction



Materials

• Specimens: 

- 28 x 5 x 5 cm 
prismatic beams

- tension 
specimens for 
fiber pullout



Laboratory Testing

• Fiber pullout

• Quasi-static bending

• Drop weight impact
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Tests: quasi-static



Quasi-Static Tests
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CT−SF−b1
CT−SF−b2
CT−BF−b1
CT−BF−b2

Specimen
Energy 

Dissipated (J)

straight 1 48.5

straight 2 50.7

hooked 1 33.9

hooked 2 37.2

brass coated straight
hooked steel



2D representation of spherical idealization of 
coarse aggregate 

Delaunay tetrahedralization defines the 
lattice connection of the particle centers 

Dual tessellation of the domain defines a set 
of discrete polyhedral cells 

 

The Lattice Discrete Particle Model

• The discrete LDPM meso-scale (10-2m – 10-3m) model represent 
concrete as a two-phase material with:  
1. Mortar (Fine aggregates) 
2. Particles (Coarse aggregates)

3D representation of spherical idealization 
of coarse aggregate   

The external triangular faces where 
adjacent cells interact are the facets   



Numerical Simulations

• Fiber Reinforcements - Simulation with 
Particle Model

Random Orientation

Simulations by G. Cusatis, Northwestern University



Numerical Simulations

• Fiber Reinforcements

Aligned based on measurements

Simulations by G. Cusatis, Northwestern University



Tests: drop weight impact

Specimen Impact 
Energy (J)

brass 3 50

brass 4 50

hooked 3 35

hooked 4 35









Qualitative Observations

Fiber pull-out
Plastic deformation

Rupture Crack networks
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Quantitative Analysis

• Spatial distribution of fibers

• Fiber alignment distribution

• Crack surfaces

• Fiber pullout & bridging

• Fiber bending & rupture



• Consider following mechanisms:

- matrix fracture, Wf 

- fiber pull-out, Wp 

- fiber bending, Wb 

- fiber rupture, Wr

 = Uext ?? 0 0.5 1 1.5 2 2.5 3 3.5
0

500

1000

1500

2000

2500

3000

3500

4000

Midspan Deflection (mm)
L
o
a
d
 (

N
)

Internal Energy Dissipation



Specific Fracture Energy

FIG. 2. Example load-midspan deflection plot for unreinforced specimen.
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FIG. 3. Illustration of net work of load calculation based on load-deflection data.

still carried significant loads at the end of testing, the area under the unloading portion
of the curve is subtracted o�, leading to what is heretofore referred to as net work
of load, Wext, as illustrated in Fig. 3. In the case of the unreinforced and reinforced
specimens whose plots are shown in Fig. 2, the reinforced specimen has nearly 120
times greater net work of load.

X-ray Computed Tomography

The internal structure of the specimens tested was evaluated by exploiting 3D x-
ray computed tomographic (CT) imaging. CT images are 3D maps of x-ray absorption
in a material. The imaging is accomplished by making multiple x-ray radiographs
of a specimen at di�erent angles. A tomographic reconstruction manipulates the 2D
radiographs in such a way to produce a complete 3D image of the specimen’s internal
structure. Internal features such as pores, cracks, and fibers can be precisely located
inside the specimen. X-ray CT techniques have been applied to concrete by a number
of researchers (Martz et al. 1993; Landis et al. 2007) because of its versatility in spatial
imaging.

In this work, tomographic scans were made with an industrial scale CT system

4 Trainor

 Having identified fibers in the scan of the damaged specimen, the work required 

to create that deformation can be calculated.  Fibers bridging cracks often exhibit plastic 

hinges, some pullout translation, or both.  The fiber pictured in Figure 4-21 has two 

distinct plastic hinges.

Figure 4-21:  Measurement of plastic deformation in plastic hinges formed in fibers 

bridging cracks

 The angular deformations of the plastic hinges at locations 1 and 2 are defined by 

the change in orientation between regions 3 and 4 and 4 and 5, respectively.  Those 

angles are computed using the scalar or dot product of the vectors in each region.  The 

angle between two vectors is defined by Borisenko and Tarapov (1968) as 

 

! = cos
"1
(

!
v
1
i
!
v
2

v
1
* v

2

) (4-15)

Dominant orientations

Plastic hinges

543

21

74

FIG. 10. Measurement of plastic hinge formation in steel fibers.

10, the discontinuity of the crack can, in some instances, cause a kinking of the fiber.
This kinking requires a certain amount of work to form the plastic hinges that make
up the kinks. Using the fiber angle measurement techniques described above, the angle
of individual fiber kinks can be measured and used to calculate the work required to
form a plastic hinge. This work is simply the kink angle multiplied by the fiber’s plastic
moment, which was determined from the fiber yield stress and moment of inertia.

The second additional energy dissipation mechanism is an extension of the fiber
pull-out, however in this case it is an indirect measurement. Specifically, we frequently
observe fibers that bridge cracks yet have no measurable pull-out from the matrix at the
fiber ends. For these fibers continuity dictates that some slippage along the interface
must have occurred unless the fibers measurably elongate, which was not observed.
This ”bridging energy” was determined by first identifying all fibers that intersected
the crack network, but did not exhibit measurable pull-out at the ends. For these fibers,
a pull-out work was calculated by taking the area under the pull-out test curve of 8(b)
up to the distance of crack opening at the fiber bridging point.

RESULTS AND DISCUSSION
The image processing techniques described in the previous section allow us to make

measurements of internal changes in material structure during damage. In this work we
seek to translate those changes into quantifiable energy dissipation mechanisms, which
can be summed and compared to the energy dissipated by the entire specimen during
loading.

Matrix Fracture Energy

The energy dissipated by crack growth in the matrix was determined from the 3
point bend tests of unreinforced specimens. This was done specifically by dividing the
net work of load (as illustrated for a reinforced specimen in Fig. 3) by the crack surface
area created, measured as described above. That is, the specific energy of fracture, Gf

is calculated by:

Gf =
Uext

�A
, (2)

where �A is the newly created surface area in the fractured material, and Uext is the

11 Trainor

120 J/m2 for UHPC matrix



Crack Surface Area



Dissipation by Matrix Fracture

total consumed energy, determined by recognizing that the net work of load must be
equal to the energy consumed by the specimen:

Uext = Wext. (3)

For the concrete matrix material used here, using Eq. (2), we determined a mean
specific fracture energy of 24J/m2 with a COV of 16%. It should be noted that this
value is nearly four times lower than the fracture energy, Gf , determined using the
RILEM draft standard (RILEM 1985), owing to the fact that the RILEM approach
employs a planar crack area simplification, rather than the irregular surfaces measured
in this work.

Energy Balance

The focus of this work was to quantify the di⇥erent micromechanical toughening
mechanisms that lead to the overall increase in toughness for the bulk material. Given
the 3D image processing tools for fiber pull-out, fiber bending, and fiber bridging,
described in the previous section, we are in a position to do just that.

If we denote the work of fiber pull-out, fiber bending, and fiber bridging as Wp, Wb,
Wr, respectively, we may calculate the total internal energy dissipation, Uint as:

Uint = Wf +Wp +Wb +Wr (4)

where Wf is the energy of matrix cracking, determined simply by taking the specific
fracture energy defined in Eq. (2), and multiplying it by the area of measured matrix
cracking, �A:

Wf = Gf ·�A (5)

The total internal energy calculation of Eq. (4) was carried out for three specimens
and is presented in Table 3. Also shown in the table is a fractional comparison of
the total internal energy dissipation to the external work of load, which was included
in Table 2. The measurements show some variation between di⇥erent energy dissipa-
tion mechanisms. In all cases fiber pullout dissipated the greatest energy, followed by
either matrix cracking or fiber bridging. In all cases fiber bending has a very small
contribution.

Additionally, It is immediately seen that the measured internal energy dissipation
is only between two thirds and three quarters of the net measured work of load. Clearly
there are significant energy dissipation mechanisms that are not accounted for in this
analysis.

Additional Energy Dissipation

The nature of failure in the reinforced beams tested lead to some obvious and some
less obvious additional sources of energy dissipation in the specimens. For many of the
specimens, there were fragments that either spalled o⇥ the surface of the specimen, or
fell out of the interior of the specimen. Every e⇥ort was made to contain these pieces
that completely disconnected from the specimen, however occasionally fragments were
lost. In these cases, only half of the generated crack area was measured in our analysis.

A perhaps less obvious source of energy dissipation comes from consideration of
additional matrix cracking. The absolute maximum spatial resolution of the 3D images
is the voxel size of 30 µm. However in images such as these, where microstructural

12 Trainor



Fiber Pull-Out

• Visually identified & manually measured

• Includes straightened hooks and fibers 
bridging large cracks



Fiber Pull-Out

• Distance of pull-out measured manually
• Work of pull-out calculated from pull-out test 

data

Fiber Pullout

Measured visually in ImageJ

Pullout measured in 
voxels and converted 

to mm using 
resolution

13 voxels = 1.092 mm
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Plastic Deformation of Fibers



Fiber Rupture



Energy Dissipation Summary

Specimen
Matrix 

Cracking 
 (mJ)

Rupture 
(mJ) 

Plastic 
Hinge 
(mJ)

Pull-Out 
(mJ)

Total 
Internal 

(J)

External 
(J)

hooked 1 2480 470 22 28100 31 34

hooked 3 3170 1580 37 24100 29 35

hooked 4 2260 400 24 25000 28 35

straight 1 1980 0 58 15600 18 50

straight 3 2460 0 6 9200 12 50

straight 4 4330 0 46 10200 15 50



Energy Dissipation Summary

Specimen
Matrix 

Cracking 
 (%)

Rupture 
(%) 

Plastic 
Hinge 

(%)

Pull-Out 
(%)

% of 
External

hooked 1 8.0 1.5 0.1 90.4 91

hooked 3 11.0 5.5 0.1 83.4 94

hooked 4 8.1 1.4 0.1 90.3 89

straight 1 11.0 0.0 0.3 88.4 36

straight 3 21.1 0.0 0.1 78.9 24

straight 4 29.7 0.0 0.3 70.0 30



Comments

• Energy accounting:
- Good accounting for hooked fibers

- Poor for smaller straight fibers.

• Research question unresolved:
- No apparent dissipation shift for hooked fibers

- Observe additional matrix cracking at expense of fiber 
pullout for straight fibers.

• Could benefit from more robust image analysis 
techniques.







Image Analysis: Fiber Pullout

• Use motion to measure pullout distance







In Progress

• Robust crack measurement in noisy images

• Friction



Summary & Conclusions

• X-ray CT analysis allows us to look at old 
problems in new ways for new insights.

- characterize fracture process zone in terms of 
specific energy dissipation distribution.

- quantify “weak links” in material

• Much work still required for full potential of 
technique

• Look to alternate techniques for 
complementary information.
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