New Ways to Look at the Fracture Processes in Concrete

Eric N. Landis

University of Maine Civil & Environmental Engineering

Imaging of Construction Materials and Geomaterials École des Ponts Paris Tech 7-8 July, 2016

Fracture Process Zone Characteristics

- Microcracking
- Aggregate interlocking
- Friction

Aim of Work

- Use our 3D "x-ray vision" to measure fracture processes that affect toughness (i.e. the fracture process zone).
 - Measurements should be in form suitable for incorporation into mesoscale computational models.

Outline

- Small scale *in situ* load tests of mortars using synchrotron source.
 - Alternate fracture energy measurements
 - Interfacial zone effects
- Mesoscale tests of fiber reinforced UHPC
 - Energy dissipation due to fiber presence

Micro Scale Test Information

- Synchrotron sources:
 - NSLS/Brookhaven National Lab
 - APS/Argonne National Lab
- 30 keV monochromatic source
- Specimens:
 - nominal 4 mm x 4 mm fine mortar cylinders
 - specimens loaded in axial compression and split cylinder mode using *in situ* frame
 - 6 µm voxel size

In situ Loading

Axial Compression

Specific Fracture Energy

First principles approach: $G_f = \frac{dW}{dA} \approx \frac{\Delta W}{\Delta A}$

Deformation

Force

For load increment, i:

- ΔW_i determined from load-deformation plot
- ΔA_i measured from 3D images:

Fracture Measurements

Split Cylinder Fracture

Split Cylinder Fracture

"Model" Aggregates

Specimens: 10% by volume (U & E) 50% by volume (U & E)

Example Slice Image

strong interface

weak interface

Fracture Sequence

Matched Specimens

Where is the "Weak Link"?

- Question: can we identify critical flaw in specimen?
 - Is it in cement paste?
 - Is it a segment of the ITZ?

Fracture Analysis

• Apply a quasi stress intensity approach.

$$K = \beta \sigma \sqrt{a} \quad \Leftrightarrow \quad K_q = P \alpha \sqrt[4]{A}$$

 α = magnitude of principal tensile stress due to unit load

A = projected area oriented normal to principal direction

Critical flaw is assumed to produce highest K

Principal tensile stress

Results: Paste Specimens

$P_{ m ult}$ (N)	$\alpha \text{ (mm}^{-2})$	$A (\mathrm{mm}^2)$	$K_{qc}~({ m MPa~mm^{.5}})$
525	0.024	0.049	5.9
480	0.025	0.107	6.9
430	0.023	0.260	7.1
450	0.020	0.396	6.7

Results: All Specimens

Specimen	P_u (N)	α	$A \ (\mathrm{mm}^2)$	$K_q \; (\mathrm{MPa} \cdot \sqrt{\mathrm{mm}})$
U10-1	175	0.022	0.022	1.5
U10-2	420	0.010	0.532	3.6
U10-3	485	0.015	0.217	5.0
U50-1	275	0.013	0.155	2.2
U50-2	415	0.026	0.059	1.6
E10-1	415	0.010	0.021	1.6
E10-2	410	0.017	0.152	4.4
E10-3	375	0.024	0.319	6.8
E10-4	280	0.028	0.081	4.2
E10-5	220	0.031	0.851	6.6
E50-1	400	0.010	0.038	1.8
E50-2	385	0.018	0.056	3.4

Results: All Specimens

ITZ as Weak Link

Analysis:

 $f_t = f_0 (1 - p_i)$ tensile strength of porous interface $\alpha_i P_u = f_0 (1 - p_i)$ tensile stress at each interface $f_0 = \frac{\alpha_i P_u}{(1 - p_i)} \quad \text{baseline interfacial strength}$

Results: ITZ as Weak Link

Specimen	P_u (N)	f_o (MPa)	mean, \bar{p}	std. dev., s_p	max, p_{max}	$K_q \; (\mathrm{MPa} \cdot \sqrt{\mathrm{mm}})$
U10-1	175	4.8	0.029	0.011	0.057	1.5
U10-2	420	8.6	0.037	0.012	0.062	3.6
U10-3	485	6.4	0.063	0.033	0.137	5.0
U50-1	275	7.5	0.038	0.028	0.140	2.2
U50-2	415	7.7	0.049	0.019	0.083	1.6
E10-1	415	11.2	0.036	0.019	0.080	1.6
E10-2	410	8.8	0.025	0.013	0.056	4.4
E10-3	375	6.2	0.047	0.014	0.085	6.8
E10-4	280	10.1	0.032	0.016	0.064	4.2
E10-5	220	6.3	0.030	0.017	0.082	6.6
E50-1	400	10.8	0.038	0.017	0.104	1.8
E50-2	385	10.6	0.041	0.015	0.092	3.4

Steel Fiber Reinforced UHPC

Research Objective

- Measure internal energy dissipation in fiber reinforced UHPC beams subjected to quasi-static and impact loads through the analysis of x-ray CT images.
- Is there a shift in internal energy dissipation mechanisms?

Materials

- UHPC Matrix: 180 MPa compressive strength
- 2 fiber types
 - 30 mm hooked steel
 - I2 mm brass coated straight
- 3.5% nominal volume fraction

Materials

- Specimens:
 - 28 x 5 x 5 cm prismatic beams
 - tension
 specimens for
 fiber pullout

Laboratory Testing

- Fiber pullout
- Quasi-static bending
- Drop weight impact

Fiber Pull-Out

Tests: quasi-static

Quasi-Static Tests

The Lattice Discrete Particle Model

- The discrete LDPM meso-scale (10⁻²m 10⁻³m) model represent concrete as a two-phase material with:
 - 1. Mortar (Fine aggregates)
 - 2. Particles (Coarse aggregates)

2D representation of spherical idealization of coarse aggregate

Delaunay tetrahedralization defines the lattice connection of the particle centers

Dual tessellation of the domain defines a set of discrete polyhedral cells

3D representation of spherical idealization of coarse aggregate

The external triangular faces where adjacent cells interact are the facets

Numerical Simulations

Fiber Reinforcements - Simulation with
 Particle Model
 Soon 3-Point Bending Test on Cortuf-Fiber

Simulations by G. Cusatis, Northwestern University

Numerical Simulations

Tests: drop weight impact

Specimen	Impact Energy (J)		
brass 3	50		
brass 4	50		
hooked 3	35		
hooked 4	35		

Qualitative Observations

Fiber pull-out

Plastic deformation

Rupture

Crack networks

Qualitative Observations

m P a C t

Quantitative Analysis

- Spatial distribution of fibers
- Fiber alignment distribution
- Crack surfaces
- Fiber pullout & bridging
- Fiber bending & rupture

Internal Energy Dissipation

• Consider following mechanisms:

- matrix fracture, W_f
- fiber pull-out, W_p
- fiber bending, W_b
- fiber rupture, W_r

$$= U_{ext}$$
??

Specific Fracture Energy

Crack Surface Area

Dissipation by Matrix Fracture

$$W_f = G_f \cdot \Delta A$$

Fiber Pull-Out

- Visually identified & manually measured
- Includes straightened hooks and fibers bridging large cracks

Fiber Pull-OuFiber Pul

- Distance of pull-out measured manually
- Work of pull-out calculated from pull-out test data

Plastic Deformation of Fibers

Fiber Rupture

Energy Dissipation Summary

Specimen	Matrix Cracking (mJ)	Rupture (mJ)	Plastic Hinge (mJ)	Pull-Out (mJ)	Total Internal (J)	External (J)
hooked I	2480	470	22	28100	31	34
hooked 3	3170	1580	37	24100	29	35
hooked 4	2260	400	24	25000	28	35
straight l	1980	0	58	15600	18	50
straight 3	2460	0	6	9200	12	50
straight 4	4330	0	46	10200	15	50

Energy Dissipation Summary

Specimen	Matrix Cracking (%)	Rupture (%)	Plastic Hinge (%)	Pull-Out (%)	% of External
hooked I	8.0	1.5	0.1	90.4	91
hooked 3	11.0	5.5	0.1	83.4	94
hooked 4	8.1	1.4	0.1	90.3	89
straight l	11.0	0.0	0.3	88.4	36
straight 3	21.1	0.0	0.1	78.9	24
straight 4	29.7	0.0	0.3	70.0	30

Comments

- Energy accounting:
 - Good accounting for hooked fibers
 - Poor for smaller straight fibers.
- Research question unresolved:
 - No apparent dissipation shift for hooked fibers
 - Observe additional matrix cracking at expense of fiber pullout for straight fibers.
- Could benefit from more robust image analysis techniques.

Image Analysis: Fiber Pullout

• Use motion to measure pullout distance

Slice number 600 (before crack).

Slice number 601.

In Progress

- Robust crack measurement in noisy images
- Friction

Summary & Conclusions

- X-ray CT analysis allows us to look at old problems in new ways for new insights.
 - characterize fracture process zone in terms of specific energy dissipation distribution.
 - quantify "weak links" in material
- Much work still required for full potential of technique
- Look to alternate techniques for complementary information.

Acknowledgements

- Edwin Nagy, Sean deWolski, Kevin Trainor, Lauren Flanders, and Dmitry Loshkov - UMaine
- John Bolander & Daiske Asahina UC Davis
- Gianluca Cusatis & Jovanca Smith Northwestern Univ.

U.S. National Science Foundation U.S. Army Corps of Engineers