Flows of suspensions of particles in yield stress fluids studied by X-ray microtomography

G. Ovarlez, S. Deboeuf, <u>N. Lenoir</u>, S. Hormozi, and X. Chateau

LOF - University of Bordeaux, CNRS, Solvay – Pessac (FRANCE) Institut Jean Le Rond d'Alembert – UPMC, CNRS - Paris (FRANCE) PLACAMAT - University of Bordeaux, CNRS – Pessac (FRANCE) Ohio University – Athens (USA)

Laboratoire Navier- ENPC, IFSTTAR, CNRS, Univ. Paris Est – Champs-sur-Marne (FRANCE)

Motivations

Dense suspensions and rheology

Can be easily shaped

Stands on a wall

Hard to cast...

Motivations

Suspension of particles in a yield stress fluid

Other examples: debris flow, coal slurries, food industry... Composite materials (reinforced with particles)

Focus on cases where only Mechanical Interactions between particles

(*i.e.* no specific physicochemical interactions between materials)

Common framework for model and experiments

Role of microstructure

rigid, monodisperse particles, volume fraction ϕ **ISOTROPIC** distribution of the particles

Role of microstructure

Material & methods

Monodisperse PS Particles (140 µm)

Concentrated Emulsion (80% NaI solution in dodecane)

1- finding a good particle/fluid contrast material + stability for 3D scan → dodecane with NaI + PS beads (140µm)

2- loading/shearing done ex-situ with a parallel plate configurationDia. 20mm & height 2mm

Pair distribution function: prepared suspension

No preshear and load

Pair distribution function: sheared suspension

Pair distribution function: sheared suspension

Steady state at low rate (10⁻² s⁻¹) ; $\tau \approx \tau_v$

In the shear plane (e_{θ}, e_{z})

Five Years of Tomography at Laboratoire Navier, the 8th of July 2016

Dependence on shear history

Elastoplastic response from initial state (isotropic)

Dependence on shear history

Dependence on shear history

Dependence on shear rate

Five Years of Tomography at Laboratoire Navier, the 8th of July 2016

Development of an in situ rheometer

Multi-configurations : Couette & parallel plates

David Hautemayou (Navier)

Couette : ext dia. 20mm, int. dia. 10mm, height 30mm *Parallel* : dia. 20mm, heigth 2mm

Load capacity : 14N Displacement : range 30mm, rate 10 mm/s, resolution 50µm Rotation: max rate 720°/s , max torque 0.42Nm at 0°/s, load 100N, repetability 0.2 µm, concentricity +-1.5µm

2D/3D validation

Same material with reference radiographs and then, a radiograph every 0.5s + some 3D scans time to time

(a) Image number 314

(b) Image number 491

(c) Image number 608

r(mm)

(d) Image number 71999

Average particle concentration

Time-resolved shear thickening

Shear rate

41% of cornstarch in water/CsCl/glycerol, small gap Couette, stress controlled

2D X-ray imaging 2D volume fraction profiles

Time-resolved shear thickening

Time-resolved shear thickening

 Development of new experimental methods for yield stress fluids with non-colloidal particles

• 2D validated by 3D \rightarrow in some cases, no need of a special in situ rheometer

Not so simple behaviour

 New experimental perspectives for many different materials (<u>both models and real materials</u>)→ if you've got a good candidate you're interested on, send it !!

Ovarlez et al. (2015), *Flows of suspensions of particles* in yield stress fluids, Journal of Rheology.

AGENCE NATIONALE DE LA RECHERCHE

ANR

THANKS FOR YOUR ATTENTION!!

