X Ray 3D imaging of construction materials

Mateis activities in XRCT on construction materials

E. Maire, J. Adrien, S. Tadier, S. Meille

MATEIS INSA Lyon UMR CNRS 5510 (F)

Outline

- 1.Introduction Background (history, some old static CT reconstructions)
- 2.What can be done with the static images : 3D Image processing
- 3.Dynamic measurements (Marco)
- Plaster burning
- Plaster setting
- FE simulation, DVC measurements (François) Conclusion

3D X Ray imagers : Tomographs used

- ESRF ID19
- ESRF ID22NI ID16B
- Lab CT at Mateis (GE V|TomeX + easytom RX Solutions)
- SLS Tomcat

Mateis / construction materials

Plaster

Post doc A. King 2005 For Lafarge F Thoué S Meulenyzer

Clinker

Quantification of the microstructure

1. Volume fraction (and its spatial distribution)

Periodic material

7

membre de

INSTITUT NATION DES SCIENCES APPLIQUÉES LYON

ISAN INSTITUT NATIONAL DES SCIENCES APPLIQUÉES LYON 2468...

⁹Size (voxel)

Tortuosity

(a)

(b)

• $T = \frac{Path_{phase}}{Path_{straight}}$ • Useful for transfer properties (thermal, acoustic)

INSTITUT NATION DES SCIENCES APPLIQUÉES LYON

Interconnections

Results on plasterboard

Pixel size 100 nm (ID22NI ESRF)

Pixel size 100 nm (ID22NI ESRF)

Conclusion (partial)

- Static 3D imaging of construction materials is well established
- + 3D image processing
- Detailed information about the microstructure
- Covers a large size range
- Non destructive
- Can be complemented with destructive
 - 3D FiB
 - 3D TEM
 - 3D atome probe

Dynamic studies

High temperature transformation of plaster

FIRE AND MATERIALS *Fire Mater.* 2016 Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/fam.2357

In situ observation of plaster microstructure evolution during thermal loading

N. Payraudeau - Le Roux, S. Meille*,[†], J. Chevalier, E. Maire and J. Adrien

Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne, France

 $2 \ \mu m$ resolution ESRF ID19 – 2 minutes for a scan

SEM in siotu observations

Figure 4. Scanning electron microscope images of a sample heated at (a) and (b) 900 °C in a conventional furnace and rapidly cooled down and (c) and (d) at 950 °C in the environmental scanning electron microscopy.

Figure 5. Reconstructed slices from synchrotron X-ray tomography of the same area of a foamed plaster heated *in situ* up to 1050 °C showing microstructural evolutions with thermal loading. Inserts show magnified views of the micropores.

Grey levels

Figure 7. Evolution of the normalized distribution of voxel intensities (arbitrary unit) on X-ray tomography reconstructions with thermal loading.

Shrinkage

Figure 6. Shrinkage measurements evaluated by image analysis of X-ray tomography reconstructions (circles, average of three measurements) and comparison with dilatometry results. Mean grey level values from the European Synchrotron Radiation Facility tomographies are also shown (squares).

In situ monitoring of plaster setting

Cement and Concrete Research 82 (2016) 107-116

Contents lists available at ScienceDirect

Cement and Concrete Research

journal homepage: www.elsevier.com/locate/cemconres

In-situ X-ray tomographic monitoring of gypsum plaster setting

Jérôme Adrien *, Sylvain Meille, Solène Tadier, Eric Maire, Layla Sasaki

Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, Villeurbanne, France

Cement and Concrete Research In situ monitoring of plaster hydration using X-Ray tomography

Materials

 β hemihydrate powder, 96% purity W/P 0.8, hand mixing Knife setting time: 1200 s (20')

$$\beta CaSO_4, \frac{1}{2}H_2O + water$$

Tomography

Spatial resolution: 2.5 µm per voxel Acquisition time: 3' per scan (600 projections) Monitoring from 800 s (13'20") to 6200 s (1h43') Final scan after full hydration and drying (better imaging conditions)

In situ monitoring of plaster hydration using X-Ray tomography

Materials

 β hemihydrate powder, 96% purity W/P 0.8, hand mixing $\beta CaSO_4, \frac{1}{2}H_2O_1$ water Knife setting time: 1200 s (20')

Tomography

Spatial resolution: 2.5 µm per voxel Acquisition time: 3' per scan (600 projections) Monitoring from 800 s (13'20") to 6200 s (1h43') Final scan after full hydration and drying (better imaging conditions)

Evolution with time

Same section of a reconstructed 3D volume

Conclusions

Schematic representation of calcium sulfate hydration

Possible control of final microstructure with initial particle size distribution Gypsum is NOT a simple

Individual particles

Mesopores: at the initial location of large hemihydrate particles (not water voids!)

Influence of HH particle size

Statistical analysis of the dissolution of HH particles depending on their size (10 particles per size class) – calculation impossible below 20 μ m

APPLIQUEES LYON

Additional tests: powder granulometry

Sieving of HH powder to keep only the smallest particles (below 40 μ m) Microstructure **after hydration**, observed at two resolutions

Raw powder Sieved powder

2.5 μm/voxel

0.7 µm/voxel

RX solution tomograph

L

Influence of powder granulometry

Distribution of pore and solid phase thickness after hydration (from successive erosion/dilation)

Possible tailoring of the microstructure

X-ray tomographs

Low flux, conical beam

High acquisition speed Phoenix V tome X

Voxel size from 1 to 100 µm Acquisition time from hours to several minutes High spatial resolution RX Solutions EasyTom Nano

Voxel size min 0,25 µm Acquisition time : several hours at maximal resolution

INSTITUT NATIONA DES SCIENCES APPLIQUÉES

Thickness at 800s (µm)	dT/dt µm/mi n	Incubati on time (s)
< 20	0.84	1500
< 30	1.08	1600
< 40	1.14	1690
< 50	1.14	1780
< 60	1.5	1820
< 70	1.5	1820

Initial HH particle

Final mesopore

Most recent results

Tomcat 0.16 µm pixel size 1 minute acquisition time

β plaster larger particles

β plaster fine particles

α plaster

Deformation modes

+DVC +FE modelling

Bouterf, Adrien, Hild, Roux, Maire

(a) Equivalent plastic strain

(b) Minor eigen stress

Figure 1: (a) Tomographic section showing the microstructure observed at a resolution of 1.4 μ m of the studied plaster whose porosity is of the order of 75 %. The size of the section is $1.34 \times 1.4 \text{ mm}^2$. (b) 3D rendering of microstructure of the core material studied herein observed at a resolution of 12 μ m. The size of the section is $4.8 \times 4.8 \text{ mm}^2$

Modelling

Shell elements the thickness of which is dictated by the measurement

Conclusion

- A lot of new things to learn from 3D X Ray imaging of construction materials
- The materials work well with the technique (pores, phases)
- Dynamic studies (setting, mechanical loading ...)

