

Cross-scale 3D characterisation of complex and heterogeneous geomaterials with X-ray micro-CT

Adrian Sheppard¹, Shane Latham¹, Andrew Kingston¹, Glenn Myers¹, Thomas Li¹, Mahsa Paziresh¹, Pieter Botha, Andrew Fogden^{1,2}, Tim Sawkins¹, Ron Cruikshank¹, Mohammad Saadatfar¹, Ryan Armstrong³, Christoph Arns³ and Tim Senden¹

¹Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University

²FEI Australia

³School of Petroleum Engineering, University of New South Wales, Sydney, Australia

Imaging techniques

- Improving quality: new scanning and reconstruction techniques
- Dynamic tomography
- Image analysis
 - Towards automated segmentation
 - Image registration

Application examples

- Correlating SEM-EDX mineral mapping with x-ray uCT
- Imaging diffusion in shale
- Iodine labelling of sub-resolution surface area
- Cross-scale mapping of permeability in heterogeneous sandstones

Research School of Physics & Engineering Australian National University

- Imaging techniques
 - Improving quality: new scanning and reconstruction techniques
 - Dynamic tomography
- Image analysis
 - Towards automated segmentation
 - Image registration
- Application examples
 - Correlating SEM-EDX mineral mapping with x-ray uCT
 - Imaging diffusion in shale
 - lodine labelling of sub-resolution surface area
 - Cross-scale mapping of permeability in heterogeneous sandstones

Instrument development at ANU

2001

- 3µm voxels,<60mm FOV
- CCD detector
- circular scanning

2014:

- 1 µm / 2–40mm
- flat panel detector
- helical scanning
- licensed to FEI

2015: 'nano' CT: 300 nm / 0.7mm

2017: whole core μCT 50 μm / 100 mm

Helical-scanning cone-beam micro-CT – why?

- Image noise in tomography is entirely due to finite photon numbers
- X-ray sources emit in all forward directions, can increase photon flux simply by moving sample and detector closer to the source

- Circular scanning trajectory does not provide sufficient data for high cone-angle acquisition
- Helical scanning data is "complete", allows exact reconstruction techniques such as FBP method of Katsevich

Helical cone-beam micro-CT

- cone angles up to 60°
- "Autofocus" techniques critical for micron scale
- Order-of-magnitude improvement in acquisition times, for no loss of SNR
- Images up to 18000 x 3000 x 3000 (so far)

Large-scale iterative reconstruction

Iterative reconstruction (*reconstruction-by-optimisation*) is needed for advanced tomography.

Problem: too computationally demanding for big data

Solution: Multi-resolution iterative reconstruction; converges in two multi-grid iterations

Demonstrated on 40 Gvoxel images.

FBP

MG Iterative

MG Iterative 1.5x higher resolution

Siddiqui-Khames

12

3.5

- Imaging techniques
 - Improving quality: new scanning and reconstruction techniques
 - Dynamic tomography
- Image analysis
 - Towards automated segmentation
 - Image registration
- Application examples
 - correlating SEM-EDX mineral mapping with x-ray uCT
 - diffusion in shale
 - lodine labelling of sub-resolution surface area
 - Cross-scale mapping of permeability in heterogeneous sandstones

Dynamic Tomography

- MPEG compression greatly reduces movie file sizes: the information required to encode the *changes* from one moment to the next is much less than that required to encode each frame in isolation
- Similarly, when doing 4D tomography to capture dynamic processes, one should need far fewer projections to reconstruct just the changes between successive frames.
- Two-phase immiscible fluid flow is a good candidate for this, since it is geometrically constrained
- Can incorporate these constraints into iterative reconstruction techniques

Imaging techniques

- Improving quality: new scanning and reconstruction techniques
- Dynamic tomography
- Image analysis
 - Towards automated segmentation
 - Image registration
- Application examples
 - Correlating SEM-EDX mineral mapping with x-ray uCT
 - Imaging diffusion in shale
 - lodine labelling of sub-resolution surface area
 - Cross-scale mapping of permeability in heterogeneous sandstones

Bilateral Filter: Estimating Noise

Bilateral Filtering: using estimated noise

Bilateral Filtering using estimated noise

Bilateral Filtering using estimated noise

Bilateral Filtering + Anisotropic Diffusion

Statistical region merging versus manual (CAC) segmentation

Imaging techniques

- Improving quality: new scanning and reconstruction techniques
- Dynamic tomography
- Image analysis
 - Towards automated segmentation
 - Image registration
- Application examples
 - correlating SEM-EDX mineral mapping with x-ray uCT
 - diffusion in shale
 - lodine labelling of sub-resolution surface area
 - Cross-scale mapping of permeability in heterogeneous sandstones

Image registration

- scalable, metric-based implementation
- 3D-3D:
 - Align 3D image to another, similar, 3D image
- 2D-3D:
 - after tomography, physically cut sample and make 2D image of surface within the same volume
- Image registration plays a role in most imaging studies at ANU.

Registration: Porosity mapping

Heterogeneous tight sand 36x8mm

Imaged at 7200x1600² 5µm voxels

Difference between saturated and dry image yields porosity map

Imaging of CO₂ dissolution

before

after

Barrow Island rock sample before and after treatment with carbonic acid for 329 hours under 1 MPa pCO_2 at 15-20°C. Field of view 0.8 x 0.7mm

Imaging techniques

- Improving quality: new scanning and reconstruction techniques
- Dynamic tomography
- Image analysis
 - Towards automated segmentation
 - Image registration
- Application examples
 - Correlating SEM-EDX mineral mapping with x-ray uCT
 - Imaging diffusion in shale
 - lodine labelling of sub-resolution surface area
 - Cross-scale mapping of permeability in heterogeneous sandstones

2D-3D Registration: X-ray MCT to SEM-EDX

X-ray microCT

SEM

X-ray microCT 2.0 µm voxels

SEM (backscatter) 0.5 µm pixels

SEM-EDX (QEM) 2.0 µm pixels

Imaging techniques

- Improving quality: new scanning and reconstruction techniques
- Dynamic tomography
- Image analysis
 - Towards automated segmentation
 - Image registration
- Application examples
 - Correlating SEM-EDX mineral mapping with x-ray uCT
 - Imaging diffusion in shale
 - lodine labelling of sub-resolution surface area
 - Cross-scale mapping of permeability in heterogeneous sandstones

Studies of diffusion in shale

- CH₂I₂ saturated sample immersed in toluene inside micro-CT
- sequence of 80 tomograms acquired while CH₂I₂ diffuses out and toluene diffuses in
- goal is to compute spatial diffusivity map, which should be closely correlated to permeability
- need concentration and mass of CH₂I₂ in each voxel
- 3 samples studied at three different resolutions (3 mm, 8 mm and 12 mm)

12mm Shale (porosity map)

1^{st} frame, map of conc(CH₂I₂)

15th frame after tol. immersion

48th frame after tol. immersion

80th frame after tol. immersion

Imaging techniques

- Improving quality: new scanning and reconstruction techniques
- Dynamic tomography
- Image analysis
 - Towards automated segmentation
 - Image registration

Application examples

- correlating SEM-EDX mineral mapping with x-ray uCT
- diffusion in shale
- Iodine labelling of sub-resolution surface area
- Cross-scale mapping of permeability in heterogeneous sandstones

Effect of diminishing resolution

Cross-scale imaging and registration

Precipice sandstone

Imaged at 5, 16 and 64 μ m

25 mm plug, 8mm subplug

'Unitised' according to porosity, grain and pore size

Prediction Results

Data Considerations

Conclusions from cross-resolution study

• There is a range of resolution in which the sharp edges are lost, but in which the grayscale data still contains useful geometric information

- For this sandstone one can make worthwhile estimates of permeability from images at 1/10th of the resolution needed for Navier-Stokes solvers.
- Future work:
 - capillary pressure and other two-phase properties
 - carbonates

Conclusions - the future?

- Quantitative X-ray tomography is possible and could hold the key for industrial applications
 - dual energy imaging and iterative reconstruction are key elements
- Unsupervised segmentation is another critical element but what are its limits?
 - need methods that quantify their accuracy
- Multi-scale and multi-modal imaging crucial for heterogeneous media
 - need robust, fast image registration
 - often have "training" volumes, so machine learning may play a role

Acknowledgements

- Australian Research Council
- Members of the ANU-UNSW Digicore Research Consortium
- Australian National Low Emissions Coal (ANLEC) R&D Program
- Australian National Computing Infrastructure (NCI)

Thank you!