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Principles of tomography

Section 1

Principles of tomography
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Principles of tomography

X-ray absorption through a medium
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Figure: Illustrated principle of tomography.
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Principles of tomography

Physical principle of tomography

• We assume the material under study absorbs some X-ray energy causing
a loss of intensity.

• We assume that this loss is proportional to the intensity of the beam and
the local absorption coefficient α(x, y). We write

dI(x, y)

dx
= −α(x, y)I(x, y), (1)

• Solving this yields

I(x, y) = exp(K) exp(−
∫
α(x, y)dx) (2)

• Boundary conditions are K = I(−r, y) = I0, the intensity of the beam,

and α(y, θ) =
∫ +r

−r α(xs, ys) dx. With this

I(y, θ) = I0 exp(−α(y, θ)) (3)
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Principles of tomography

Linear projection operator

• In a rotating frame, we write

xs = y cos θ + x cos(π − θ)
ys = y sin θ + x sin(π − θ),

(4)

which is the parametric equation of the X-ray beam with ordinate y.

• We define S(y, θ) = − log(I(y, θ)/I0). This is a linear function of
(xs, ys)

• We denote this operator Θ, the tomography projection operator:

Θ :R2 7−→ R× [0, 2π[

α(xs, ys) −→ S(y, θ)
(5)

• S(y, θ) is the ideal observed data: the sinogram.
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Principles of tomography

Direct problem

• Calculating the sinogram from an image is easy.
• In discrete form, with a fixed number of angles nθ and I is a nx× ny

image, the Θ operator can be modelled by a matrix T of dimensions
[nx× ny, ny × nθ]

• Computing the sinogram consists of a matrix multiplication

S = TI (6)

• This is an example of a direct problem.

(a) (b)

Figure: The sinogram of Lena.
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Principles of tomography

Tomography operator

wj

w1

wN

Figure: Determining the tomography operator

• Determining the tomography operator is not so trivial however.

S(y, θ) =
∑
i∈I

wi,θ,yI(x, y) (7)

• Various choices of w exist for parallel beam, cone beam, 2D, 3D, etc.

• Analytical expression may be difficult to find, however always solvable in
practice.
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Principles of tomography

Inverse problem

• However, going the other way is hard: an inverse problem.

• The main problems are due to noise and limited number of projections.
In reality we observe

S = TI + ε, (8)

where ε is some noise, often modelled by a white additive Gaussian noise.
More complex models exist (Poisson-Gauss, Rician, exponential, etc).

• The adjoint operator
J = T>S (9)

is the back-projection operator.

• T is not square, not invertible, and usually ill-conditioned.

• The minimum norm solution

I? = T>(TT>)−1S (10)

is the filtered back-projection operator.
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Principles of tomography

Tomography with limited angles

Figure: Tomography with limited angular resolution
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Inverse problems in imaging

Section 2

Inverse problems in imaging
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Inverse problems in imaging

Motivation: inverse problems in imaging

−→

• Images we observe are nearly always blurred, noisy, projected versions of
some “reality”.

• We wish to dispel the fog of acquisition by removing all the artefacts as
much as possible to observe the “real” data.

• This is an inverse problem.
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Inverse problems in imaging

Maximum Likelihood

• We want to estimate some statistical parameter θ on the basis of some
observation x. If f is the sampling distribution, f(x|θ) is the probability
of x when the population parameter is θ. The function

θ 7→ f(x|θ)

is the likelihood. The Maximum Likelihood estimate is

θ̂ML(x) = argmax
θ

f(x|θ)

• E.g, if we have a linear operator H (in matrix form) and Gaussian
deviates, then

argmax
x

f(x) = −‖Hx− y‖22 = −x>H>Hx + 2y>Hx− y>y

is a quadratic form with a unique maximum, provided by

∇f(x) = −2H>Hx+ 2H>y = 0→ θ = (H>H)−1H>y
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Inverse problems in imaging

Strengths and drawbacks of MLE

• When possible, MLE is fast and effective. Many imaging operators have
a MLE interpretation:

• Gaussian smoothing ;
• Wiener filtering ;
• Filtered back projection for tomography ;
• Principal component analysis . . .

• However these require a very descriptive model (with few degrees of
freedom) and a lot of data, typically unsuitable for images because we do
not have a suitable model for natural images.

• When we do not have all these hypotheses, sometimes the Bayesian
Maximum A Posteriori approach can be used instead.

H. Talbot : Optimisation — July 8, 2016 14/34



Inverse problems in imaging

Maximum A Posteriori

• If we assume that we know a prior distribution g over θ, i.e. some a-priori
information. Following Bayesian statistics, we can treat θ as a random
variable and compute the posterior distribution of θ:

θ 7→ f(θ|x) =
f(x|θ)g(θ)∫

ϑ∈Θ
f(x|ϑ)g(ϑ)dϑ

(i.e. the Bayes theorem).

• Then the Maximum a Posteriori is the estimate

θ̂MAP (x) = argmax
θ

f(θ|x) = argmax
θ

f(x|θ)g(θ)

• MAP is a regularization of ML.
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Concepts in optimisation

Section 3

Concepts in optimisation
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Concepts in optimisation

Introduction

• Mathematical optimization is a domain of applied mathematics relevant
to many areas including statistics, mechanics, signal and image
processing.

• Generalizes many well known techniques such as least squares, linear
programming, convex programming, integer programming, combinatorial
optimization and others.

• In this talk we will overview both the continuous and discrete
formulations.

• We follow the notations of Boyd & Vandeberghe [2].
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Concepts in optimisation

General form

Cost function and constraints

An optimization problem generally has the following form

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m
(11)

x = (x1, . . . , xn) is a vector of Rn called the optimization variable of the
problem; f0 : Rn → R is the cost function functional; the fi : Rn → R are the
constraints and the bi are the bounds (or limits).
A vector x? is is optimal, or is a solution to the problem, if it has the smallest
objective value among all vectors that satisfy the constraints.
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Concepts in optimisation

Types of optimization problems

• The type of the variables, the cost function and the constraints
determine the type of problems we are dealing with.

• Optimization problems, in their most general form, are usually unsolvable
in practice. NP-complete problems (traveling salesperson, subset-sum,
etc) can classically be put in this form and so can many NP-hard
problems.

• Some mathematical regularity is necessary to be able to find a solution:
for example, linearity or convexity in all the functions.

• Requiring integer solutions usually, but not always, makes things much
harder: Diophantine vs linear equations for instance.
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Concepts in optimisation

Resolution of optimisation problems

The resolution of an optimisation problem depends on its form. In order of
complexity, we can solve optimisation problems:

• In closed form solution (some regression problems)

• If convex: by some iterative descent-like method, yielding a global
optimum. Note: may work in the non-differentiable case.

• If non-convex, but regular in some other way (differentiable,
quasi-convex, ...): iterative descent-like, converging to a local optimum
(or a critical point).

• If combinatorial, usually NP-hard, some exceptions: transport problems
(graph cuts, transshipment problems).

• If all else fails: brute force, meta-heuristics.
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Concepts in optimisation

Example closed form: least-squares

Least squares with no constraints

minimize f0(x) = ‖Hx− b‖22 =

k∑
i=1

aᵀxi − bi (12)

The system is quadratic, so convex and differentiable. The solution to (12) is
unique and reduces to the linear equation

(HᵀH)x = Hᵀb. (normal equation) (13)

The analytical solution is x = (HᵀH)−1Hᵀb, however HᵀH should never be
calculated, much less the inverse, for numerical reasons.
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Concepts in optimisation

Regularization: Tikhonov

Even with something as simple as least-squares, if H is ill-conditioned, the
solution will be very sensitive to noise, e.g. in the example of deconvolution or
tomography. One solution is to use regularization.

Ill-posed least-squares problems

The simplest regularization strategy is due to Tikhonov [8].

minimize f0(x) = ‖Hx− b‖22 + ‖Γx‖22, (14)

where Γ is a well-chosen operator, e.g. λI or ∇x or a wavelet operator. The
solution is given analytically by

x = (HᵀH + ΓᵀΓ)−1Hᵀb (15)
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Concepts in optimisation

Example iterative: linear programming

Linear programming with constraints

minimize cᵀx

subject to aᵀi x ≤ bi; i = 1, . . . , n
(16)

• No analytical solution.

• Well established family of algorithms: the Simplexe (Dantzig 1948) ;
interior-point (Karmarkar 1984)

• Not always easy to recognize. Important for compressive sensing.
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Concepts in optimisation

Continuous image restoration model

• We suppose there exists some unknown image x ∈ RN .

• However we do observe some data y ∈ RQ via some linear operator H,
which is corrupted by some noise:

y = Hx + ε, H ∈ RQ×N

x y

H. Talbot : Optimisation — July 8, 2016 24/34



Concepts in optimisation

Recovery

• We seek to recover a good approximation x̂ of x from H and y.

• H can be:
• Model for camera, including defocus and motion blur
• MRI, PET,
• X-Ray tomography
• . . .

• ε often modeled by Additive White Gaussian Noise, but can be Poisson,
Poisson Gauss, Rician, etc.

Simplest case: least squares:

x̂ = argminx ‖Hx− y‖22

analytical, simple, effective, but not robust to outliers.
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Concepts in optimisation

Recovery

• We seek to recover a good approximation x̂ of x from H and y.

• H can be:
• Model for camera, including defocus and motion blur
• MRI, PET,
• X-Ray tomography
• . . .

• ε often modeled by Additive White Gaussian Noise, but can be Poisson,
Poisson Gauss, Rician, etc.

Tikhonov regularization:

x̂ = argminx ‖Γx‖22 + λ‖Hx− y‖22

reflect the prior assumption that we want to avoid large x. Also analytical
and more robust but not sparse.
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Concepts in optimisation

Recovery

• We seek to recover a good approximation x̂ of x from H and y.

• H can be:
• Model for camera, including defocus and motion blur
• MRI, PET,
• X-Ray tomography
• . . .

• ε often modeled by Additive White Gaussian Noise, but can be Poisson,
Poisson Gauss, Rician, etc.

Enforced sparsity:

x̂ = argminx ‖Γx‖0 + λ‖Hx− y‖2

If we know x to be sparse (many zero elements) in some space (e.g.
Wavelets). Highly non-convex.
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Concepts in optimisation

Recovery

• We seek to recover a good approximation x̂ of x from H and y.

• H can be:
• Model for camera, including defocus and motion blur
• MRI, PET,
• X-Ray tomography
• . . .

• ε often modeled by Additive White Gaussian Noise, but can be Poisson,
Poisson Gauss, Rician, etc.

Compressive sensing:

x̂ = argminx ‖Γx‖1 + λ‖Hx− y‖2

If we know x to be sparse (many zero elements) in some space (e.g.
Wavelets). Smallest convex approximation of the `0 pseudo-norm.
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Concepts in optimisation

Formal context

Penalized optimization problem

Find
min
x∈RN

(
F (x) = Φ(Hx− y) + λR(x)

)
,

Φ  Fidelity to data term, related to noise

R  Regularization term, related to some a priori assumptions

λ  Regularization weight

Here, x is sparse in a dictionary G of analysis vectors in RN

F 0(x) = Φ(Hx− y)+λ `0(Γx)

where ψδ is a differentiable, non-convex approximation of the `0 norm.
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Concepts in optimisation

Formal context

Penalized optimization problem

Find
min
x∈RN

(
F (x) = Φ(Hx− y) + λR(x)

)
,

Φ  Fidelity to data term, related to noise

R  Regularization term, related to some a priori assumptions

λ  Regularization weight

Here, x is sparse in a dictionary G of analysis vectors in RN

F δ(x) = Φ(Hx− y)+λ

C∑
c=1

ψδ(Γ
>
c x)

where ψδ is a differentiable, non-convex approximation of the `0 norm.
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Concepts in optimisation

Non-convex optimization

• The current frontier.

• Many interesting applications thought to be very hard to solve: blind
deblurring

• Many current methods extend to the Non-Convex case

• Generally only a local minimum is reached, but this might be OK. The
miimum might be of high quality : stochastic optimization.

• For instance: see results achieved by deep-learning methods.
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Concepts in optimisation

`2-`0 regularization functions

We consider the following class of potential functions:

1. (∀δ ∈ (0,+∞)) ψδ is differentiable.

2. (∀δ ∈ (0,+∞)) limt→∞ ψδ(t) = 1.

3. (∀δ ∈ (0,+∞)) ψδ(t) = O(t2) for small t.

Examples:

−−− ψδ(t) = t2

2δ2+t2

− · −· ψδ(t) = 1− exp(− t2

2δ2 )
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Concepts in optimisation

Majorize-Minimize principle [Hunter04]

Objective: Find x̂ ∈ Arg minx Fδ(x)

For all x′, let Q(.,x′) a tangent majorant of Fδ at x′ i.e.,

Q(x,x′) > Fδ(x), ∀x,
Q(x′,x′) = Fδ(x

′)

MM algorithm:

∀j ∈ {0, . . . , J},

xj+1 ∈ Arg minxQ(x,xj)
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Concepts in optimisation

Image reconstruction

Original image x Noisy sinogram y
128× 128 SNR=25 dB

• y = Tx̄ + ε with

{
T Projection operator
ε Gaussian noise

• x̂ ∈ Arg minx

(
1
2‖Tx− y‖2 + λ

∑
c ψδ(Γ

>
c x)
)

• Non convex penalty / convex penalty
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Concepts in optimisation

Results: Non convex penalty

Reconstructed image
SNR = 20.4 dB MM-MG algorithm:

Convergence in 134 s
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Concepts in optimisation

Results: Convex penalty

Reconstructed image
SNR = 18.4 dB

MM-MG algorithm:
Convergence in 60 s
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Conclusion

Section 4

Conclusion
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Conclusion

Conclusion

• Optimization is a very powerful, general methodology for solving inverse
problems in variational form.

• We’ve drawn a panorama of interesting methodologies in image
processing

• Generally optimization problems are unsolvable without some regularity
assumptions. There exist a trade-off between the generality of a
framework and the efficiency of associated algorithms.
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Conclusion
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